Přednáška 13

Teorie aritmetiky a
Gödelovy výsledky o neúplnosti a nerozhodnutelnosti

Hilbert calculus

- The set of axioms has to be decidable, axiom schemes:

1. $A \supset(B \supset A)$
2. $(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))$
3. $(\neg B \supset \neg A) \supset(A \supset B)$
4. $\forall x \mathrm{~A}(x) \supset \mathrm{A}(x / \mathrm{t}) \quad$ Term t substitutable for x in A
5. $(\forall x[\mathrm{~A} \supset \mathrm{~B}(x)]) \supset(\mathrm{A} \supset \forall x \mathrm{~B}(x)), \quad x$ is not free in A

Hilbert calculus

The deduction rules are of a form:
$\mathbf{A}_{1}, \ldots, \mathbf{A}_{m} \mid-\mathrm{B}_{1}, \ldots, \mathrm{~B}_{m}$
enable us to prove theorems (provable formulas) of the calculus. We say that each B_{i} is derived (inferred) from the set of assumptions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{m}$.
Rule schemas:

MP: A, A $\supset \mathbf{B} \mid-\mathbf{B}$
G: $\quad \mathbf{A} \mid-\forall x \mathbf{A}$
(modus ponens)
(generalization)

A Proof from Assumptions

A (direct) proof of a formula A from assumptions A_{1}, \ldots, A_{m} is a sequence of formulas (proof steps) $B_{1}, \ldots B_{n}$ such that:

- $A=B_{n} \quad$ (the proved formula A is the last step)
- each $B_{i}(i=1, \ldots, n)$ is either
- an axiom (logically valid formula), or
- an assumption $\mathrm{A}_{k}(1 \leq k \leq m)$, a formula valid in a chosen interpretation I, or
- B_{i} is derived from the previous $\mathrm{B}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{i}-1)$ using a rule of the calculus.
A formula A is provable from A_{1}, \ldots, A_{m}, denoted $A_{1}, \ldots, A_{m} \mid-A$, if there is a proof of A from A_{1}, \ldots, A_{m}.

The Theorem of Deduction

- Let A be a closed formula, B any formula. Then:
- $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{k} \mid-\mathbf{A} \supset \mathbf{B}$ if and only if $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{k}, \mathbf{A} \mid-\mathbf{B}$.
- For $k=0$: $\mid-\mathbf{A} \supset \mathbf{B}$ if and only if $\mathbf{A} \mid-\mathbf{B}$.

Remark: The statement
a) if $\mid-\mathrm{A} \supset \mathrm{B}$, then $\mathrm{A} \mid-\mathrm{B}$
is valid universally, not only for A being a closed formula (the proof is obvious - modus ponens).
On the other hand, the other statement
b) If $\mathbf{A} \mid-\mathrm{B}$, then $\mid-\mathbf{A} \supset \mathbf{B}$
is not valid for an open formula A (with at least one free variable).

- Example: Let $\mathrm{A}=\mathrm{A}(x), \mathrm{B}=\forall x \mathrm{~A}(x)$.

Then $\mathbf{A}(\boldsymbol{x}) \mid-\forall \mathbf{x A}(x)$ is valid according to the generalisation rule.
But the formula $\mathbf{A}(\boldsymbol{x}) \supset \forall \mathbf{x A}(\boldsymbol{x})$ is generally not logically valid, and therefore not provable in a sound calculus.

Theorem on Soundness (semantic consistence)

- Generalisation rule $\mathbf{A}(\boldsymbol{x}) \mid-\forall x \mathbf{A}(\boldsymbol{x})$ is tautology preserving and truth-in-interpretation preserving:
- If in a structure I the formula $A(x)$ is true for any valuation e of $x,|=| A(x)$, then, by definition, it means that $\mid=, \forall x A(x)$ (is true in the interpretation I).

A Complete Calculus: if $\mid=\mathbf{A}$ then $\mid-\mathbf{A}$

- Each logically valid formula is provable in the calculus
- The set of theorems = the set of logically valid formulas
- Sound (semantic consistent) and complete calculus: |= A iff |- A
- Provability and logical validity coincide in FOPL ($1^{\text {st}}$-order predicate logic)
- Hilbert calculus is sound and complete

Properties of a calculus: deduction rules, consistency

- The set of deduction rules enables us to perform proofs mechanically, considering just the symbols, abstracting of their semantics. Proving in a calculus is a syntactic method.
- A natural demand is a syntactic consistency of the calculus.
- A calculus is consistent iff there is a WFF φ such that φ is not provable (in an inconsistent calculus everything is provable).
- This definition is equivalent to the following one: a calculus is consistent iff a formula of the form $A \wedge \neg A$, or $\neg(A \supset A)$, is not provable.
- A calculus is syntactically consistent iff it is sound (semantically consistent).

Sound and Complete Calculus: |= A iff |- A

- Soundness
(an outline of the proof has been done)
- In 1928 Hilbert and Ackermann published a concise small book Grundzüge der theoretischen Logik, in which they arrived at exactly this point: they had defined axioms and derivation rules of predicate logic (slightly distinct from the above), and formulated the problem of completeness. They raised a question whether such a proof calculus is complete in the sense that each logical truth is provable within the calculus; in other words, whether the calculus proves exactly all the logically valid FOPL formulas.
- Completeness Proof (T a set of sentences = closed formulas)
- Stronger version: if $T \mid=\varphi$, then $T \mid-\varphi$. Kurt Gödel, 1930
- A theory T is consistent iff there is a formula φ which is not provable in $\mathrm{T}: T \mid \varphi$.

Strong Completeness of Hilbert Calculus: if $T \mid=\varphi$, then $T \mid-\varphi$

- The proof of the Completeness theorem is based on the following Lemma:
Each consistent theory has a model.
- if $\boldsymbol{T} \mid=\varphi$, then $\boldsymbol{T} \mid-\varphi$ iff
- if $\operatorname{not} \mathrm{T} \mid-\varphi$, then $\operatorname{not} \mathrm{T} \mid=\varphi \Rightarrow$
- $\{\mathbf{T} \cup \neg \varphi\}$ does not prove φ as well
($\neg \varphi$ does not contradict T) \Rightarrow
- $\{\mathbf{T} \cup \neg \varphi\}$ is consistent, it has a model $\mathrm{M} \Rightarrow$
- M is a model of T in which φ is not true \Rightarrow
- φ is not entailed by $\mathrm{T}: \mathbf{T} \mid \neq \varphi$

Properties of a calculus: Hilbert calculus is not decidable

- There is another property of calculi. To illustrate it, let's raise a question: having a formula φ, does the calculus decide φ ?
- In other words, is there an algorithm that would answer Yes or No, having φ as input and answering the question whether φ is logically valid or no? If there is such an algorithm, then the calculus is decidable.
- If the calculus is complete, then it proves all the logically valid formulas, and the proofs can be described in an algorithmic way.
- However, in case the input formula φ is not logically valid, the algorithm does not have to answer (in a final number of steps).
- Indeed, there are no decidable 1st order predicate logic calculi, i.e., the problem of logical validity is not decidable in the FOPL.
- (the consequence of Gödel Incompleteness Theorems)

Provable = logically true?
 Provable from ... = logically entailed by ...?

- The relation of provability $\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \mid-\mathbf{A}\right)$ and the relation of logical entailment $\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n} \mid=\mathrm{A}\right)$ are distinct relations.
- Similarly, the set of theorems $\mid-\mathbf{A}$ (of a calculus) is generally not identical to the set of logically valid formulas |= A.
- The former is syntactic and defined within a calculus, the latter independent of a calculus, it is semantic.
- In a sound calculus the set of theorems is a subset of the set of logically valid formulas.
- In a sound and complete calculus the set of theorems is identical with the set of logically valid formulas.

1921: Hilbert's Program of Formalisation of Mathematics

- Kurt Gödel 1929, 1930-doctoral dissertation Completeness Theorem;
$\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n} \mid-\mathrm{B}$ iff $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n} \mid=\mathrm{B}$
- Continued: 1930 (!!!) - Gödel first announced Incompleteness Theorem to Rudolf Carnap in Café Reichsrat in Vienna.
- The work on incompleteness was published early in 1931, and defended as a Habilitationschrift at the University of Vienna in 1932.
- The title of Privatdozent gave Gödel the right to give lectures at the university but without pay.

1921: Hilbert's Program of Formalisation of Mathematics

- Reasoning with infinites \Rightarrow paradoxes (Zeno, infinitesimals in the $17^{\text {th }}$ century, Russell, ...)
- Hilbert: 'finitary' methods of axiomatisation and reasoning in mathematics;
- Kant: We obviously cannot experience infinitely many events or move about infinitely far in space.
- However, there is no upper bound on the number of steps we execute, we can always move a step further.
- But at any point we will have acquired only a finite amount of experience and have taken only a finite number of steps.
- Thus, for a Kantian like Hilbert, the only legitimate infinity is a potential infinity, not the actual infinity.
- "mathematics is about symbols" (?), mathematical reasoning Syntactic laws of symbol manipulation (?); consistency proof

Hilbert Calculus: Completeness

Incompleteness of arithmetic, Gödel's first and second theorems

- Now we are not interested just in logical truths, i.e., sentences true under every interpretation of the FOPL language,
- but in sentences characterizing arithmetic of natural numbers which are true under the standard (intended) interpretation, which is the structure \mathbf{N} :
- $\boldsymbol{N}=\left\langle\mathbf{N}, \mathbf{0}, \mathbf{S}_{\mathbf{N}},+_{\mathrm{N}},{ }_{\mathrm{N}},=_{\mathrm{N}}, \leq_{\mathrm{N}}\right\rangle$

Theory T: logical + special axioms, rules (e.g. of Hilbert)

- $\mathbf{T}|=\varphi \Leftrightarrow \mathbf{T}|-\varphi$.
- What is missing? Why did Hilbert want more?
- In order to avoid inconsistencies (the set of all subsets, ...) - proof of consistency of arithmetic
- To find a consistent theory whose axioms characterise arithmetic of natural numbers completely, so that each arithmetic truth expressed in a formal language would be logically entailed by the axioms and thus derivable from them in a finite number of steps.
- Moreover, the set of axioms has to be fixed and initially well defined.
- Gödel's two theorems on incompleteness show that these demands cannot be met.

Theory N: arithmetic

- constant symbol $\underline{0}$ (zero)
- unary functional symbol S (successor: +1)
- binary functional symbols + and * (plus, times)
- binary predicate symbols $=, \leq$
- Sentences like:
- $\forall x \forall y(x+y)=(y+x)$
(true in N)
- $\exists x(\mathbf{S}(\mathbf{S}(x)) \leq \underline{0}$
(False in N)
- each sentence φ :
- either $\boldsymbol{N} \mid=\varphi$, or $\boldsymbol{N} \mid=\neg \varphi$

A theory T is complete iff

T is consistent and for each sentence φ it holds that: $T \mid-\varphi$ or $T \mid-\neg \varphi$;

- in other words, there are no independent sentences;
- each sentence φ is decidable in T.
- $\operatorname{Thm}(T)$ - the set of all formulas provable in T :
- $T H M(T)=\{\varphi ; T \mid-\varphi\}$
- Th(N) - the set of all sentences True in N - the True arithmetic:
- $\operatorname{Th}(N)=\{\varphi ; N \mid=\varphi\} ; \quad$? complete ?
- $\operatorname{THM}(T) \subseteq \operatorname{Th}(N) ; T H M(T)=T h(N)$

T- not Thm

Special axioms to characterise arithmetics: a) Robinson (Q)

- $\forall x$
($S x \neq \underline{0}$)
- $\forall \boldsymbol{x} \forall \boldsymbol{y}$
($\mathrm{Sx}=\mathrm{S} y \supset x=y$)
- $\forall x$
- $\forall x \forall y$
$(x+\underline{0}=x)$
- $\forall \boldsymbol{x}$
- $\forall x \forall y$
$(x * S y=(x * y)+x)$
- $\forall x \forall y \quad(x \leq y=\exists z(z+x=y))$

Robinson's theory Q:
 \mathbf{N} is its model. \mathbf{Q} is a weak theory.

It proves only simple sentences like: $5+1=6$
General simple statements like commutativity of + or $*$, i.e., sentences like
$\forall x \forall y(x+y=y+x)$, $\forall x \forall y(x * y=y * x)$,
are not provable in Q .
However, it proves all the Σ-sentences that should be provable, i.e., the Σ-sentences true in N : if σ is a Σ-sentence such that $N \mid=\sigma$, then $Q \mid-\sigma$.

S-sentences - syntactically simple

- Syntactical complexity: a number of alternating quantifiers. (actual infinity !)
- an arithmetic formula φ is formed from a formula ψ by a bounded quantification, if φ has one of the following forms:
- $\forall v(v<x \supset \psi), \exists v(v<x \& \psi), \forall v(v \leq x \supset \psi)$, $\exists v(v \leq x \& \psi)$, where v, x are distinct variables, $\forall v, \exists v$-bounded quantifiers.
- A formula φ is a bounded formula if it contains only bounded quantifiers. A formula φ is a Σ-formula, if φ is formed from bounded formulas using only \wedge, \vee, \exists, and any bounded quantifiers.

Peano arithmetic PA

- Q is Σ-complete;
- $P A$ arithmetic $=Q+i n d u c t i o n ~ a x i o m s: ~$
- $[\varphi(\underline{0}) \wedge \forall \boldsymbol{x}(\varphi(\mathbf{x}) \supset \varphi(\mathbf{S x}))] \supset \forall \boldsymbol{x} \varphi(\mathbf{x})$!! Actual inf.
- $P A$ is "reasonable", it conforms to finitism: we added a "geometrical pattern" of formulas - axiom schema.
- $N \mid=P A, N$ is a standard model.
- Terms denoting numbers: $\underline{3}=$ SSS으, ... (numerals)
- $\underline{2}+\underline{3}=S S \underline{O}+S S S \underline{O}=S S S S S \underline{O}=\underline{5}$

Peano arithmetic PA is not complete

- $P A$ is a strong theory and many laws of arithmetic are provable in it;
- however, there is a sentence(s) φ :
- \mathbf{N} |= φ but PA not $\mid-\varphi$. And, of course,
- PA not |- $\neg \varphi$ as well, because $\neg \varphi$ is not true in \mathbf{N} and PA proves only sentences true in its models. (soundness assumption)
- Well, let us add some axioms or rules ... ?
- No way: you cannot know in advance, which should be added ...

Recursive axiomatisation (finitism!)

- A theory T is recursively axiomatized if there is an algorithm that for any formula φ decides whether φ is an axiom of the theory or not.
- Algorithm: a finite procedure that for any input formula φ gives a "Yes / No" output in a finite number of steps.
- Due to Church's thesis it can be explicated by any computational model, e.g., Turing machine.

PA is arithmetically sound: all arithmetic sentences provable in T are valid in N .

- Gödel's first theorem on incompleteness !
- Let T be a theory that contains Q (i.e., the language of T contains the language of arithmetic and T proves all the axioms of Q).
- Let T be recursively axiomatized and arithmetically sound. ($\boldsymbol{T}|-\varphi \Rightarrow \boldsymbol{N}|=\varphi$)
- Then T is an incomplete theory, i.e., there is a sentence φ independent of T :
- $\varphi \in \operatorname{Th}(\mathrm{N}) ; \varphi \notin \operatorname{Thm}$ (T)
- T proves neither φ nor $\neg \varphi$.

What did Goedel prove?

- it is not possible to find a recursively axiomatized consistent theory, in which all the true arithmetic sentences about natural numbers could be proved.
- Either you have a (semantically complete) naïve arithmetic = all the sentences true in N - not recursively axiomatisable
- Or you have an incomplete theory
- Completeness \times recursive axiomatisation

Summary and outline of the Proof

1. An arithmetic theory such as Peano arithmetic $(P A)$ is adequate: it encodes finite sequences of numbers and defines sequence operations such as concatenation (sss(0),+, ...).
2. In an adequate theory T we can encode the syntax of terms, sentences (closed formulas) and proofs.

- Let us denote the code (e.g. ASCII) of φ as $\langle\varphi\rangle$.

3. Self-Reference (diagonal) lemma: For any formula $\varphi(x)$ (with one free variable) there is a sentence ψ such that ψ iff $\varphi(<\psi\rangle)$.
4. Let $\operatorname{Th}(N)$ be the set of numbers that encode true sentences of arithmetic (i.e. formulas true in the standard model of arithmetic), and $\operatorname{Thm}(T)$ the set of numbers that encode sentences provable in an adequate (sound) theory T.
5. Since the theory is sound, $\operatorname{Thm}(T) \subseteq \operatorname{Th}(N)$.
6. It would be nice if they were the same; in that case the theory T would be complete.

Summary and outline of the Proof

7. No such luck if the theory T is recursively axiomatized, i.e., if the set of axioms is computable (algorithm ... Yes, No).

- Computability of the set of axioms and completeness of the theory T are two goals that cannot be met together, because:
- The set $\operatorname{Th}(\mathbf{N})$ is not even definable by an arithmetic sentence (that would be true if its number were in the set and false if not):
- Let n be a number such that $\boldsymbol{n} \notin \boldsymbol{T h}(\mathbf{N})$.
- Then by the Self Reference (3) there is a sentence φ such that $\langle\varphi\rangle=n$.
- Hence φ iff $\langle\varphi\rangle \notin \operatorname{Th}(\mathbf{N})$ iff φ is not true in \mathbf{N} iff not $\varphi-$ contradiction. There is no such φ. (Liar's Paradox)

Summary and outline of the Proof

8. Since undefinable implies uncomputable there will never be a program that would decide whether an arithmetic sentence is true or false (in the standard model of arithmetic).
9. The set $\boldsymbol{T h m}(\boldsymbol{T})$ is definable in an adequate theory, say Q:
φ : the number $\langle\varphi\rangle \in \operatorname{Thm}(\boldsymbol{T})$ iff $\boldsymbol{T} \mid-\varphi$, for:
the set of axioms is recursively enumerable, i.e., computable,

- so is the set of proofs that use these axioms and
- so is the set of provable formulas, $\boldsymbol{T h m}(\mathbf{T})$.
- $\quad \operatorname{Thm}(T)$ is definable.
- Let $\boldsymbol{n} \notin \operatorname{Thm}(\boldsymbol{T})$. By the Self Reference - there is a sentence φ such that $\langle\varphi\rangle=n$.
- Hence φ iff $\langle\varphi\rangle \notin \operatorname{Thm}(T)$ iff φ is not provable. This is impossible in a sound theory: provable sentences are true. Hence φ is true but not provable in T.

Decidability

- A theory T is decidable if the set $\operatorname{Thm(T)}$ of formulas provable in T is (generally) recursive (i.e., computable).
- If a theory is recursively axiomatized and complete, then it is decidable.
- consequence of Gödel's incompleteness theorem:
- No recursively axiomatized theory T that contains Q and has a model N, is decidable: there is no algorithm that would decide every formula φ (whether it is provable in the theory T or not).

THM(T)-provable by T; $\mathbf{T h (N) -}$ true in N; Ref(T)--T proves $\neg \varphi$

If the (consistent) theory \boldsymbol{T} is recursively axiomatized and complete, then $\operatorname{Thm}(T)=\operatorname{Th}(N)$, and $\operatorname{Ref}(T)$ is a complement of them. But PA is not.

Gödelův důkaz detailněji

1. Kódování: efektivní 1-1 zobrazení množiny syntaktických objektů do množiny prírozených čísel (injekce), např. ASCII
2. Teorie rekurzivních funkcí (po Gödelovi): (partial) recursive functions = algorithmically computable.

- A set S is recursively enumerable if there is a partial recursive function f such that S is a domain of $f: \operatorname{Dom}(f)=S$. („počítá" S, ale nemusí počítat komplement S)
- A set S is a (general) recursive set if its characteristic function is a (total) recursive function - („počítá S i komplement S")

3. Formule definují množiny: $A(x)$ definuje množinu A_{S} těch prvků a universa, pro které $\mid=1$

Gödelův důkaz detailněji

4. Σ-úplnost teorie Q: Σ-sentence dokazatelné v

Q jsou právě všechny pravdivé v N.

- Σ-formulas define just all the algorithmically computable, i.e., recursively enumerable sets of natural numbers.

5. $\operatorname{Dok}(x)$ je Σ-formule, která definuje množinu Thm(T) - množinu čísel těch formulí, které jsou dokazatelné v T. Tedy:
6. $\quad T \mid-\varphi$ iff $\langle\varphi\rangle \in \operatorname{Thm}(T)$ iff $N \mid=\operatorname{Dok}(\langle\varphi\rangle)$

Gödelův důkaz detailněji

7. Gödelovo diagonální lemma: For any formula $\psi(x)$ of the arithmetic language with one free variable there is a sentence φ such that $\varphi \equiv \psi(\langle\varphi\rangle)$ is provable in Q. Hence:
8. rovnice $\mathbf{Q} \mid-\varphi \equiv \psi(\underline{\langle\varphi\rangle})$ - neznámá φ má vždy pro libovolné ψ řešení, a to nezávisle na kódování.
Metafora: φ říká "Já mám vlastnost ψ ".

Diagonální lemma - netriviální aplikace, volba predikátu ψ

- Aplikace self-reference:
- Alfred Tarski (slavný polský logik) aplikace Epimenidova paradoxu Iháře (,,já jsem nepravdivá"): neexistuje definice pravdivosti pro všechny formule: $N \mid=\varphi$ iff $N \mid=\operatorname{True}(\langle\varphi\rangle)$.
- Neexistuje formule True(x), která by definovala množinu Th(N) - kódů formulí pravdivých v N.
- $Q|-\omega \equiv \neg \operatorname{True}(\leq \omega>), T|-\omega \equiv \neg \operatorname{Tr}(\underline{\langle\omega>})$. But
- $T \mid-\omega \equiv \operatorname{Tr}(\underline{\langle\omega>})$ - spor.

Diagonální lemma - netriviální aplikace, volba predikátu ψ

- Gödel's sentence claims "I am not provable", Rosser's sentence says that "each my proof is preceded by a smaller proof of my negation".

9. Aplikuj diagonální lemma na $\neg \operatorname{Dok}(x)$!! - žádný paradox, $\operatorname{Dok}(x)$ definuje Thm(T)!
T |- φ iff $\langle\varphi\rangle \in \operatorname{Thm}(T)$ iff N |= Dok($\langle\varphi\rangle)$
10. Gödel's diagonal formula v such that Q|-v三 \mid Dok($\langle v\rangle)$). Thus we have:

- v iff $\langle\nu\rangle \notin \operatorname{Thm}(T)$ iff v is not provable in T.

Gödelova formule vje nezávislá na teorii T a přitom pravdivá v T!

- Kdyby $T \mid-v$ pak by $N \mid=\operatorname{Dok}(\langle v\rangle)$. Ale
- $\operatorname{Dok}(\langle v\rangle)$ je Σ-formule, tedy $T \mid-\operatorname{Dok}(\langle v\rangle)$.
- $\operatorname{Dok}(\langle\imath\rangle) \equiv \neg v$, tedy $T \mid-\neg v$. Spor (pokud není T nekonzistentní. Ale to není - má model N).
- Tedy $\boldsymbol{N} \mid=\neg \operatorname{Dok}(<\nu>)$ a $\boldsymbol{N} \mid=v$, ale $T \mid-\neg v$.
- T je neúpIná teorie, nedemonstruje všechny aritmetické pravdy.

Důsledky

- Žádná rekurzivně axiomatizovaná „rozumná" aritmetika (obsahující aspoň Q) není rozhodnuteIná (algoritmus by se dal lehko zobecnit na dokazatelnost).
- Problém logické pravdivosti není rozhodnutelný v kalkulu PL1 - v „prázdné teorii" bez speciálních axiomů.
- Neexistuje algoritmus, který by rozhodoval dokazatelnost v kalkulu, a tedy logickou pravdivost.

Alonzo Church: parciální rozhodnutelnost

- Množina Thm(kalkulu) teorémů kalkulu je rekurzivně spočetná, ale není rekurzivní:
- „Dostaneme se" výpočtem - algoritmem na všechny logicky pravdivé formule, ale nerozhodneme komplement Thm(kalkulu).
- Pokud φ je logicky pravdivá, v konečném čase algoritmus (třeba rezoluční metoda) odpoví. Jinak může cyklovat.

Gödel's Second Theorem on incompleteness.

- In any consistent recursively axiomatizable theory T that is strong enough to encode sequences of numbers (and thus the syntactic notions of "formula", "sentence", "proof") the consistency of the theory T is not provable in T.
- „Já jsem nedokazatelná" je ekvivalentní „Neexistuje formule φ taková, že < $\varphi>$ a < $\neg \varphi>$ jsou dokazatelné v T".

Proč Hilbert tak nutně potřeboval důkaz konzistence?

- Vždyt' PA má model N! Ale: tento předpoklad množiny N přirozených čísel jakožto modelu je předpoklad aktuálního nekonečna.
- Co když zase „vyskočí" paradoxy? Víme jak "vypadaji" hodně velká přirozená čísla?
- PA má také jiné modely, které nejsou isomorfní s N ! (indukce)
- $[\varphi(\underline{0}) \wedge \forall \boldsymbol{x}(\varphi(\boldsymbol{x}) \supset \varphi(\mathbf{S x}))] \supset \forall \boldsymbol{x} \varphi(\mathbf{x})$

Proč Hilbert tak nutně potřeboval důkaz konzistence?

- Roughly: $\boldsymbol{T} \mid=\varphi$ iff $T \mid-\varphi$ (strong Completeness).
- Now the sentence v. T not $\mid-\varphi, \Rightarrow v$ is not valid in every model of T.
- But - standard model $\mathbf{N} \mid=\varphi$, which is a model of T.
- Every model isomorphic to \mathbf{N} is also a model of T;
- v is however not valid in every model of T. Hence T must have a non-standard model.

Conclusion

- Gödelovy výsledky změnily tvár moderní matematiky: rozvoj teorie rekurzivních funkcí, computability, computer science, ... atd.
- Possible impact of Gödel's results on the philosophy of mind, artificial intelligence, and on Platonism
- Gödel himself suggested that the human mind cannot be a machine and that Platonism is correct.
- Most recently Roger Penrose has argued that "the Gödel's results show that the whole programme of artificial intelligence is wrong, that creative mathematicians do not think in a mechanic way, but that they often have a kind of insight into the Platonic realm which exists independently from us"

