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Hilbert calculus

The set of axioms has to be decidable,
axiom schemes:

A>(BoA)

(A>(B>2C)o((A>B)>(A>C(C))

(-B o —-A) o (A o B)

vx A(x) o A(x/t) Term t substitutable for x in A
(Vx[A>B(x)]) o (A>VxB(x)), xisnotfreeinA
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Hilbert calculus

The deduction rules are of a form:
A1,...,Am |_ B1,...,Bm

enable us to prove theorems (provable
formulas) of the calculus. We say that each B, is

derived (inferred) from the set of assumptions
A, LA

Rule schemas:
MP: ALA>B|-B (modus ponens)
G: Al-VxA (generalization)
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A Proof from Assumptions

A (direct) proof of a formula A from assumptions

A,...,A_is a sequence of formulas (proof steps)
B,,.. B 'such that:

e A=B_  (the proved formula A is the last step)
e each Bi (i=1,...,n) is either
an axiom (logically valid formula), or

an assumption A, (1 < k <m), a formula valid in a chosen
/nterpretatlon /, or

is derived from the previous B; (j=1,...,i-1) using a rule
of the calculus.

A formula A is provable from A,, ..., A, denoted
= |— A, if there is a proof ofA from A, . A
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The Theorem of Deduction

e Let A be a closed formula, B any formula. Then:
o A, A,.., A |-A>B ifandonlyif A, A,,...,A,, A |- B.
e Fork=0:|-A>Bifandonlyif A |- B.

Remark: The statement
a) if |-A>B, then A|-B

is valid universally, not only for A being a closed formula (the proof is
obvious — modus ponens).

On the other hand, the other statement
b) If A|-B, then |-A>B

is not valid for an open formula A (with at least one free variable).
e Example: Let A = A(x), B = VXA(x).

Then A(x) |- VxA(x) is valid according to the generalisation rule.

But the formula A(x) o VxA(x) is generally not logically valid, and
therefore not provable in a sound calculus.
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Theorem on Soundness
(semantic consistence)

e Generalisation rule A(x) |- VxA(x)

Is tautology preserving and
truth-in-interpretation preserving:.

e If in a structure | the formula A(x) is true for
any valuation e of x, |=, A(x), then, by
definition, it means that |=, VxA(x) (is true in
the interpretation 1).
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A Complete Calculus: coes
if |= A then |- A T

e Each logically valid formula is provable
In the calculus

e The set of theorems = the set of logically
valid formulas

e Sound (semantic consistent) and
complete calculus: |I= A iff |- A

e Provability and logical validity coincide in FOPL
(1s-order predicate logic)

e Hilbert calculus is sound and complete
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Properties of a calculus: -
deduction rules, consistency

The set of deduction rules enables us to perform proofs
mechanically, considering just the symbols, abstracting of their
semantics. Proving in a calculus is a syntactic method.

A natural demand is a syntactic consistency of the calculus.

A calculus is consistent iff there is a WFF ¢ such that ¢ is not
provable (in an inconsistent calculus everything is provable).

This definition is equivalent to the following one: a calculus is
consistent iff a formula of the form A A —A, or —(A o A), is not
provable.

A calculus is syntactically consistent iff it is sound (semantically
consistent).
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Sound and Complete Calculus: coeo
= Aiff |- A T

e Soundness
(an outline of the proof has been done)

e In 1928 Hilbert and Ackermann published a concise small book
Grundzlige der theoretischen Logik, in which they arrived at exactly
this point: they had defined axioms and derivation rules of predicate
logic (slightly distinct from the above), and formulated the problem of
completeness. They raised a question whether such a proof calculus
is complete in the sense that each logical truth is provable within the
calculus; in other words, whether the calculus proves exactly all the
logically valid FOPL formulas.

e Completeness Proof (T a set of sentences = closed formulas)
e Stronger version: if T |= ¢, then T |- ¢. Kurt Godel, 1930

e A theory T is consistent iff there is a formula ¢ which is not
provable in T: T |4 ¢.
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Strong Completeness of Hilbert
Calculus: if T |= @, then T |- ¢

e The proof of the Completeness theorem is based on

the following Lemma:
Each consistent theory has a model.
e ifT|=¢, thenT|- ¢ Iff
o if notT |-, then not T |= o=
o {T U —@} does not prove ¢ as well
(—¢p does not contradict T) =
o {T U —@} is consistent, it has a model M =
e Mis a model of T in which ¢ is not true =
e ¢ is notentailed by T: T [ ¢
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Properties of a calculus: Hilbert o
calculus is not decidable

There is another property of calculi. To illustrate it, let’s raise a
question: having a formula ¢, does the calculus decide ¢?

In other words, is there an algorithm that would answer Yes or
No, having ¢ as input and answering the question whether ¢ is
logically valid or no? If there is such an algorithm, then the calculus
is decidable.

If the calculus is complete, then it proves all the logically valid
formulas, and the proofs can be described in an algorithmic way.

However, in case the input formula ¢ is not logically valid, the
algorithm does not have to answer (in a final number of steps).

Indeed, there are no decidable 1st order predicate logic calculi, i.e.,
the problem of logical validity is not decidable in the FOPL.

(the consequence of Godel Incompleteness Theorems)
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Provable = logically true?

Provable from ... = logically entailed by ...?
The relation of provability (A,,...,A,, | A) and the
relation of logical entailment (A1, A |=A)are
distinct relations.

Similarly, the set of theorems |- A (of a calculus) is
generally not identical to the set of logically valid
formulas |= A.

The former is syntactic and defined within a calculus,
the latter independent of a calculus, it is semantic.

In a sound calculus the set of theorems is a subset of
the set of logically valid formulas.

In a sound and complete calculus the set of theorems
IS identical with the set of logically valid formulas.
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1921: Hilbert’s Program of sel:
Formalisation of Mathematics

e Kurt Godel 1929, 1930-doctoral dissertation
Completeness Theorem;
A, . A |-BiffA,...A |=B

e Continued: 1930 (!'!) - Godel first announced
Incompleteness Theorem to Rudolf Carnap in
Café Reichsrat in Vienna.

e The work on incompleteness was published early In
1931, and defended as a Habilitationschrift at the
University of Vienna in 1932.

e The title of Privatdozent gave Godel the right to give
lectures at the university but without pay.
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1921: Hilbert’s Program of eet
Formalisation of Mathematics

e Reasoning with infinites = paradoxes (Zeno, infinitesimals in the
17t century, Russell, ...)

e Hilbert: finitary’ methods of axiomatisation and reasoning in
mathematics;

e Kant. We obviously cannot experience infinitely many events or
move about infinitely far in space.

e However, there is no upper bound on the number of steps we
execute, we can always move a step further.

e But at any point we will have acquired only a finite amount of
experience and have taken only a finite number of steps.

e Thus, for a Kantian like Hilbert, the only legitimate infinity is a
potential infinity, not the actual infinity.

e “mathematics is about symbols” (?), mathematical reasoning -
Syntactic laws of symbol manipulation (?); consistency proof
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Hilbert Calculus: Completeness




Incompleteness of arithmetic, o°
Godel’s first and second theorems

e Now we are not interested just in logical
truths, i.e., sentences true under every
interpretation of the FOPL language,

e but in sentences characterizing arithmetic
of natural numbers which are true under
the standard (intended) interpretation, which
IS the structure N

® N — <N, 0, SN’ +N, *N! =N! SN>
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Theory T: logical + special axioms,
rules (e.g. of Hilbert)

e TI=FoT|-o0.
e \What is missing? Why did Hilbert want more?

e In order to avoid inconsistencies (the set of all
subsets, ...) — proof of consistency of arithmetic

e TJo find a consistent theory whose axioms
characterise arithmetic of natural numbers
completely, so that each arithmetic truth
expressed in a formal language would be logically
entailed by the axioms and thus derivable from
them in a finite number of steps.

e Moreover, the set of axioms has to be fixed and
initially well defined.

e (GOdel’s two theorems on incompleteness show that
these demands cannot be met. -



Theory N: arithmetic

e constant symbol 0 (zero)
e unary functional symbol S (successor: +1)
e binary functional symbols + and * (plus, times)
e binary predicate symbols =, <
e Sentences like:

VxVy (x+y) = (y+x) (true in N)

dx (S(S(x)) < 0) (False in N)
e each sentence ¢:

either N|= ¢, or N |= —¢
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T is consistent and for each sentence ¢ it holds

A theory T is complete iff

—
-y
Q)

e

T|—(p0r Tl— _I(P,
In other words, there are no independent
sentences,;

each sentence ¢ Is decidable in T.

Thm(T) — the set of all formulas provable in T:
o THM(T) ={o; T |- ¢}

Th(N) — the set of all sentences True in N — the
True arithmetic:

e Th(N) ={op; N |= ¢}; ’? complete ?
o THM(T) c Th(N); THM(T) = Th(N)



T |- not Thm /

|=5 not Th(N)

?27?

T: |=yAxioms

[=x Th(N) = ??
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Special axioms to characterise | ::
arithmetics: a) Robinson (Q)

o VX
o VXVYy
o VX
o VXVYy
o VX
o VXVy
o VXVYy

12/6/2006

(Sx = 0)
(Sx=Syo>x=y)

(x +0 = x)

(x +Sy =S(x +y))

(x *0=0)

(x * Sy = (x * y) + x)
(x<y=3z(z+x=y))
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Robinson’s theory Q:
N is its model. Q is a weak theory.

It proves only simple sentences like: 5+ 1 ='6

General simple statements like commutativity
of + or *, i.e., sentences like
VXVy (X +y =y +X),

VXVy (X * y =y * X),

are not provable in Q.

However, it proves all the 2-sentences that
should be provable, i.e., the 2-sentences true

in N: if ois a 2~sentence such that N |= o,
then Q |- o.
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2-sentences — syntactically simple

e Syntactical complexity: a number of alternating
quantifiers. (actual infinity !)

e an arithmetic formula ¢ is formed from a formula y by
a bounded quantification, if ¢ has one of the following
forms:

o Vv(v<xovy),dv(v<x&vy), Vv (v<Xx>Dvy),
Jv (v < x & ), where v, x are distinct variables,
Vv, v - bounded quantifiers.

e A formula o is a bounded formula if it contains only
bounded quantifiers. A formula ¢ is a 2-formula, if ¢
is formed from bounded formulas using only A, v, 3,
and any bounded quantifiers.
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Peano arithmetic PA

e Qis 2-complete;
e PA arithmetic = Q + induction axioms:

o [p(0) A VX (p(x) D p(SXx))] > VX ¢(x) 11 Actual inf.

e PA is “reasonable”, it conforms to finitism: we added
a “geometrical pattern” of formulas — axiom schema.

e N|=PA, Nis a standard model.
e Terms denoting numbers: 3 = SSSO, ... (numerals)
o 2+3=S8S0+ SSS0=SSSSS0=5
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Peano arithmetic PA is not oo
complete

e PA is a strong theory and many laws of arithmetic
are provable in it;

e however, there is a sentence(s) ¢:
e N |= ¢ but PA not |- ¢. And, of course,

e PA not |- —¢ as well, because —¢ is not true in N
and PA proves only sentences true in its models.
(soundness assumption)

e Well, let us add some axioms or rules ... ?

e No way: you cannot know in advance, which
should be added ...
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Recursive axiomatisation oo
(finitism!)

e Atheory T is recursively axiomatized if
there is an algorithm that for any formula ¢
decides whether ¢ is an axiom of the theory
or not.

e Algorithm: a finite procedure that for any
input formula ¢ gives a “Yes / No” output in a
finite number of steps.

e Due to Church’s thesis it can be explicated by
any computational model, e.q., Turing
machine.
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PA is arithmetically sound: all arithmetic oo
sentences provable in T are valid in N.

e Godel’s first theorem on incompleteness !

e Let T be atheory that contains Q (i.e., the language
of T contains the language of arithmeticand T
proves all the axioms of Q).

e Let T be recursively axiomatized and arithmetically
sound. (T|-¢= N|= o)

e Then T is an incomplete theory, i.e., there is a
sentence ¢ independent of T:
o ¢ Th(N), o ¢ Thm (T)

e [ proves neither ¢ nor —¢.
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What did Goedel prove? 5

e it is not possible to find a recursively
axiomatized consistent theory, in which all
the true arithmetic sentences about natural
numbers could be proved.

e Either you have a (semantically complete)
naive arithmetic = all the sentences true in N
— not recursively axiomatisable

e Or you have an incomplete theory
e Completeness X recursive axiomatisation
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Summary and outline of the Proof

An arithmetic theory such as Peano arithmetic (PA) is
adequate: it encodes finite sequences of numbers and defines
sequence operations such as concatenation (sss(0),+, ...).

In an adequate theory T we can encode the syntax of terms,
sentences (closed formulas) and proofs.

Let us denote the code (e.g. ASCII) of ¢ as <¢>.
Self-Reference (diagonal) lemma: For any formula ¢(x) (with one
free variable) there is a sentence y such that vy iff p(<y>).

Let Th(N) be the set of numbers that encode true sentences of
arithmetic (i.e. formulas true in the standard model of arithmetic),
and Thm(T) the set of numbers that encode sentences provable
in an adequate (sound) theory T.

Since the theory is sound, Thm(T) — Th(N).
It would be nice if they were the same; in that case the theory T
would be complete.
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Summary and outline of the Proof

7. No such luck if the theory T is recursively
axiomatized, i.e., if the set of axioms is computable
(algorithm ... Yes, No).

Computability of the set of axioms and completeness of
the theory T are two goals that cannot be met together,
because:

The set Th(N) is not even definable by an arithmetic
sentence (that would be true if its number were in the set and
false if not):

Let n be a number such that n ¢ Th(N).

Then by the Self Reference (3) there is a sentence ¢ such
that <p> = n.

Hence ¢ iff <> ¢ Th(N) iff ¢ is not true in N iff not ¢ —
contradiction. There is no such ¢. (Liar's Paradox) 30



Summary and outline of the Proof §§

Since undefinable implies uncomputable there will
never be a program that would decide whether an
arithmetic sentence is true or false (in the
standard model of arithmetic).

The set Thm(T) is definable in an adequate theory,
say Q:
¢: the number <p> € Thm(T) iff T |- o, for:
the set of axioms is recursively enumerable, i.e., computable,
so is the set of proofs that use these axioms and
so is the set of provable formulas, Thm(T).
Thm(T) is definable.

Let n ¢ Thm(T). By the Self Reference - there is a sentence
@ such that <¢> = n.

Hence ¢ iff <¢> ¢ Thm(T) iff ¢ is not provable. This is
impossible in a sound theory: provable sentences are true.
Hence ¢ is true but not provable in T. 31



Decidability

e A theory T is decidable if the set Thm(T) of
formulas provable in T is (generally) recursive (i.e.,
computable).

e If atheory is recursively axiomatized and complete,
then it is decidable.

e consequence of Godel's incompleteness theorem:

e No recursively axiomatized theory T that contains
Q and has a model N, is decidable: there is no
algorithm that would decide every formula ¢
(whether it is provable in the theory T or not).
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THM(T)-provable by T; Th(N)-
true in N; Ref(T)--T proves —o

~

—
-

THM(T) \ Th(N)

/

/

/

/

\

Ref(T)

If the (consistent) theory T is recursively axiomatized
and complete, then Thm(T) = Th(N), and Ref(T) is a
complement of them. But PA is not.
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Godeluv dukaz detailnéji

1. Koédovani: efektivni 1-1 zobrazeni mnoziny
Syntaktickych objektu do mnoziny prirozenych cCisel
(injekce), napr. ASCII

2. Teorie rekurzivnich funkci (po Godelovi):

(partial) recursive functions = algorithmically computable.

A set S is recursively enumerable if there is a partial recursive
function fsuch that S is a domain of f. Dom(f) = S.
(,pocCita“ S, ale nemusi pocitat komplement S)

A set S is a (general) recursive set if its characteristic function
is a (total) recursive function — (,pocCita S i komplement S%)

3. Formule definuji mnoziny: A(x) definuje mnozinu Ag
téch prvku a universa, pro ktere |=, A(x)[e], e(x) = a

12/6/2006 Kurt Gédel 34




Godeluv dukaz detailnéji

4. 2-uplnost teorie Q: >-sentence dokazatelne v
Q jsou prave vSechny pravdivé v N.

>-formulas define just all the algorithmically
computable, i.e., recursively enumerable sets of
natural numbers.

5. Dok(x) je Z-formule, ktera definuje mnozinu
Thm(T) — mnozinu Cisel tech formuli, ktere
jsou dokazatelne v T. Tedy:

6. T|- ¢iff <p> € Thm(T) iff N |= Dok(<¢>)
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Godeluv dukaz detailnéji

7. Godelovo diagonalni lemma: For any
formula y(x) of the arithmetic language with
one free variable there is a sentence ¢ such
that @ = v (<@>) is provable in Q. Hence:

8. rovnice Q |- ¢ = y(<@>) — neznama ¢ ma vzdy
pro libovolné y reseni, a to nezavisle na
kodovani.

Metafora: ¢ fika “Ja mam vilastnost y".
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Diagonalni lemma — netriviailni | s:
aplikace, volba predikatu vy

e Aplikace self-reference:

e Alfred Tarski (slavny polsky logik) aplikace
Epimenidova paradoxu Ihare (,ja jsem
nepravdiva“). neexistuje definice pravdivosti
pro vSechny formule: N |= ¢ iff N |= True(<¢p>).

Neexistuje formule True(x), ktera by definovala
mnozinu Th(N) — koédu formuli pravdivych v N.
Q|- w=~True(<w>), T |- o = -Tr(<w>). But
T'|— o =Tr(<w>) — spor.
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Diagonalni lemma — netrivialni
aplikace, volba predikatu vy

e (GOdel’s sentence claims “| am not provable’,
Rosser’s sentence says that “each my proof is
preceded by a smaller proof of my negation”.

9. Aplikuj diagonalni lemma na —Dok(x) !! - zadny
paradox, Dok(x) definuje Thm(T)!

T |- @ iff <p> € Thm(T) iff N |= Dok(<¢p>)

10. Godel’s diagonal formula v such that

Q |- v=-Dok(<v>)). Thus we have:

o v iff <v>¢ Thm(T) iff v is not provable in T.
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Godelova formule v je nezavisla| ::
na teorii T a pritom pravdivav T!

e Kdyby T |- vpak by N |= Dok(<v>). Ale
o Dok(<v>) je Z-formule, tedy T |- Dok(<v>).

e Dok(<v>) = —v,tedy T |- —v. Spor (pokud neni T
nekonzistentni. Ale to neni — ma model N).

e Tedy N|=—-Dok(<v>)aN|=v,ale T |- —v.

o T je neuplna teorie, nedemonstruje vsechny
aritmetickeé pravdy.
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Dusledky

e Zadna rekurzivné axiomatizovana ,rozumna*“
aritmetika (obsahujici aspon Q) neni
rozhodnutelna (algoritmus by se dal lehko
zobecnit na dokazatelnost).

e Problém logickeé pravdivosti neni
rozhodnutelny v kalkulu PL1 — v ,prazdné
teorii“ bez specialnich axiomu.

o Neexistuje algoritmus, ktery by rozhodoval
dokazatelnost v kalkulu, a tedy logickou
pravdivost.
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Alonzo Church:
parcialni rozhodnutelnost

e Mnozina Thm(kalkulu) teoremu kalkulu je
rekurzivne spocetna, ale neni rekurzivni:

e ,Dostaneme se” vypoctem — algoritmem na
vsechny logicky pravdivé formule, ale
nerozhodneme komplement Thm(kalkulu).

e Pokud ¢ Je logicky pravdiva, v konechém
case algoritmus (treba rezolucni metoda)
odpovi. Jinak muze cyklovat.
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Godel’s Second Theorem on oo
Incompleteness.

e In any consistent recursively axiomatizable
theory T that is strong enough to encode
sequences of numbers (and thus the
syntactic notions of “formula”, “sentence”,
“proof”) the consistency of the theory T is not

provable in T.

e ,Ja jsem nedokazatelna” je ekvivalentni
,Neexistuje formule ¢ takova, ze <¢p> a <—¢>
jsou dokazatelné v T
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Proc Hilbert tak nutne potreboval |22
dukaz konzistence?

e Vzdyt PA ma model N! Ale: tento predpoklad
mnoziny N prirozenych Cisel jakozto modelu
je predpoklad aktualniho nekonecna.

e Co kdyz zase ,vyskoci® paradoxy? Vime jak
,vypadaji“ hodné velka prirozena cisla?

e PA ma take jiné modely, které nejsou
isomorfni s N ! (indukce)

o [p(0) A VX (p(X) D ¢(SXx))] > VX ¢(x)
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Proc Hilbert tak nutne potreboval
dukaz konzistence?

e Roughly: T|=@iff T |- ¢ (strong
Completeness).

e Now the sentence v. T not |- ¢, = vis not
valid in every model of T.

e But - standard model N |= ¢, which is a
model of T.

e Every model isomorphic to N is also a
model of T;

e vis however not valid in every model of T.
Hence T must have a non-standard model.
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Conclusion

e Godelovy vysledky zmeénily tvar moderni
matematiky: rozvoj teorie rekurzivnich funkci,
computability, computer science, ... atd.

e Possible impact of Godel’s results on the philosophy
of mind, artificial intelligence, and on Platonism ....

e Godel himself suggested that the human mind
cannot be a machine and that Platonism is correct.

e Most recently Roger Penrose has argued that “the
Godel’s results show that the whole programme of
artificial intelligence is wrong, that creative
mathematicians do not think in a mechanic way, but
that they often have a kind of insight into the
Platonic realm which exists independently from us”
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