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Přednáška 13

Teorie aritmetiky a 
Gödelovy výsledky o neúplnosti a 

nerozhodnutelnosti
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Hilbert calculus
The set of axioms has to be decidable,
axiom schemes:

1. A ⊃ (B ⊃ A)
2. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
3. (¬B ⊃ ¬A) ⊃ (A ⊃ B)
4. ∀x A(x) ⊃ A(x/t) Term t substitutable for x in A
5. (∀x [A ⊃ B(x)]) ⊃ (A ⊃ ∀x B(x)), x is not free in A
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Hilbert calculus
The deduction rules are of a form: 

A1,…,Am |– B1,…,Bm
enable us to prove theorems (provable 
formulas) of the calculus. We say that each Bi is 
derived (inferred) from the set of assumptions 
A1,…,Am.
Rule schemas:
MP:  A, A ⊃ B |– B (modus ponens)
G: A |– ∀x A (generalization)
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A Proof from Assumptions
A (direct) proof of a formula A from assumptions 

A1,…,Am is a sequence of formulas (proof steps) 
B1,…Bn such that:
A = Bn (the proved formula A is the last step)
each Bi (i=1,…,n) is either 

an axiom (logically valid formula), or
an assumption Ak (1 ≤ k ≤ m), a formula valid in a chosen 
interpretation I, or
Bi is derived from the previous Bj (j=1,…,i-1) using a rule 
of the calculus.

A formula A is provable from  A1, …, Am, denoted 
A1,…,Am |– A, if there is a proof of A from A1,…,Am. 
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The Theorem of Deduction
Let A be a closed formula, B any formula. Then:
A1, A2,...,Ak |– A ⊃ B if and only if A1, A2,...,Ak, A |– B.
For k = 0: |– A ⊃ B if and only if A |– B.

Remark: The statement 
a) if |– A ⊃ B,  then A |– B

is valid universally, not only for A being a closed formula (the proof is 
obvious – modus ponens). 
On the other hand, the other statement 

b) If A |– B, then |– A ⊃ B 
is not valid for an open formula A (with at least one free variable).
Example: Let A = A(x), B = ∀xA(x).
Then A(x) |– ∀xA(x) is valid according to the generalisation rule.
But the formula A(x) ⊃ ∀xA(x) is generally not logically valid, and 
therefore not provable in a sound calculus. 
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Theorem on Soundness 
(semantic consistence)

Generalisation rule A(x) |– ∀xA(x)
is tautology preserving and 
truth-in-interpretation preserving: 
If in a structure I the formula A(x) is true for 
any valuation e of x, |=I A(x), then, by 
definition, it means that |=I ∀xA(x) (is true in 
the interpretation I).
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A Complete Calculus: 
if |= A then |− A

Each logically valid formula is provable 
in the calculus
The set of theorems = the set of logically 
valid formulas
Sound (semantic consistent) and 
complete calculus: |= A iff |− A

Provability and logical validity coincide in FOPL 
(1st-order predicate logic)

Hilbert calculus is sound and complete



12/6/2006 Kurt Gödel 8

Properties of a calculus: 
deduction rules, consistency

The set of deduction rules enables us to perform proofs 
mechanically, considering just the symbols, abstracting of their 
semantics. Proving in a calculus is a syntactic method. 
A natural demand is a syntactic consistency of the calculus. 
A calculus is consistent iff there is a WFF ϕ such that ϕ is not 
provable (in an inconsistent calculus everything is provable). 
This definition is equivalent to the following one: a calculus is 
consistent iff a formula of the form A ∧ ¬A, or ¬(A ⊃ A), is not 
provable. 
A calculus is syntactically consistent iff it is sound (semantically 
consistent).
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Sound and Complete Calculus: 
|= A iff |− A

Soundness 
(an outline of the proof has been done)
In 1928 Hilbert and Ackermann published a concise small book 
Grundzüge der theoretischen Logik, in which they arrived at exactly 
this point: they had defined axioms and derivation rules of predicate 
logic (slightly distinct from the above), and formulated the problem of 
completeness. They raised a question whether such a proof calculus 
is complete in the sense that each logical truth is provable within the 
calculus; in other words, whether the calculus proves exactly all the 
logically valid FOPL formulas.
Completeness Proof (T a set of sentences = closed formulas) 
Stronger version: if T |= ϕ, then T |– ϕ. Kurt Gödel, 1930
A theory T is consistent iff there is a formula ϕ which is not 
provable in T: T |– ϕ.
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Strong Completeness of Hilbert 
Calculus: if T |= ϕ, then T |– ϕ

The proof of the Completeness theorem is based on 
the following Lemma:

Each consistent theory has a model.
if T |= ϕ, then T |– ϕ iff
if not T |– ϕ, then not T |= ϕ⇒
{T ∪ ¬ϕ} does not prove ϕ as well 
(¬ϕ does not contradict T) ⇒
{T ∪ ¬ϕ} is consistent, it has a model M ⇒
M is a model of T in which ϕ is not true ⇒
ϕ is not entailed by T: T |= ϕ
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Properties of a calculus: Hilbert 
calculus is not decidable

There is another property of calculi. To illustrate it, let’s raise a 
question: having a formula ϕ, does the calculus decide ϕ? 
In other words, is there an algorithm that would answer Yes or 
No, having ϕ as input and answering the question whether ϕ is 
logically valid or no? If there is such an algorithm, then the calculus 
is decidable. 
If the calculus is complete, then it proves all the logically valid 
formulas, and the proofs can be described in an algorithmic way.
However, in case the input formula ϕ is not logically valid, the 
algorithm does not have to answer (in a final number of steps).
Indeed, there are no decidable 1st order predicate logic calculi, i.e.,
the problem of logical validity is not decidable in the FOPL.
(the consequence of Gödel Incompleteness Theorems)
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Provable = logically true?
Provable from … = logically entailed by …?

The relation of provability (A1,...,An |– A) and the 
relation of logical entailment (A1,...,An |= A) are 
distinct relations. 
Similarly, the set of theorems |– A (of a calculus) is 
generally not identical to the set of logically valid 
formulas |= A. 
The former is syntactic and defined within a calculus, 
the latter independent of a calculus, it is semantic.
In a sound calculus the set of theorems is a subset of 
the set of logically valid formulas. 
In a sound and complete calculus the set of theorems 
is identical with the set of logically valid formulas.
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1921: Hilbert’s Program of 
Formalisation of Mathematics

Kurt Gödel 1929, 1930-doctoral dissertation 
Completeness Theorem; 
A1,…,An |– B iff A1,…,An |= B
Continued: 1930 (!!!) - Gödel first announced 
Incompleteness Theorem to Rudolf Carnap in 
Café Reichsrat in Vienna. 
The work on incompleteness was published early in 
1931, and defended as a Habilitationschrift at the 
University of Vienna in 1932. 
The title of Privatdozent gave Gödel the right to give 
lectures at the university but without pay.
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1921: Hilbert’s Program of 
Formalisation of Mathematics

Reasoning with infinites ⇒ paradoxes (Zeno, infinitesimals in the 
17th century, Russell, …)
Hilbert: ‘finitary’ methods of axiomatisation and reasoning in 
mathematics;
Kant: We obviously cannot experience infinitely many events or 
move about infinitely far in space. 
However, there is no upper bound on the number of steps we 
execute, we can always move a step further. 
But at any point we will have acquired only a finite amount of 
experience and have taken only a finite number of steps. 
Thus, for a Kantian like Hilbert, the only legitimate infinity is a 
potential infinity, not the actual infinity.
“mathematics is about symbols” (?), mathematical reasoning -
Syntactic laws of symbol manipulation (?); consistency proof
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Hilbert Calculus: Completeness 

WFF

|– A
Theorems

Axioms

|= A
LVF

???
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Incompleteness of arithmetic, 
Gödel’s first and second theorems

Now we are not interested just in logical 
truths, i.e., sentences true under every 
interpretation of the FOPL language, 
but in sentences characterizing arithmetic 
of natural numbers which are true under 
the standard (intended) interpretation, which 
is the structure N:
N = 〈N, 0, SN, +N, ∗N, =N, ≤N〉
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Theory T: logical + special axioms, 
rules (e.g. of Hilbert)

T |= ϕ ⇔ T |– ϕ.
What is missing? Why did Hilbert want more?
In order to avoid inconsistencies (the set of all
subsets, …) – proof of consistency of arithmetic
To find a consistent theory whose axioms 
characterise arithmetic of natural numbers 
completely, so that each arithmetic truth 
expressed in a formal language would be logically 
entailed by the axioms and thus derivable from 
them in a finite number of steps.
Moreover, the set of axioms has to be fixed and 
initially well defined.
Gödel’s two theorems on incompleteness show that 
these demands cannot be met.
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Theory N: arithmetic
constant symbol 0 (zero)
unary functional symbol S (successor: +1) 
binary functional symbols + and ∗ (plus, times) 
binary predicate symbols =, ≤
Sentences like: 
∀x∀y (x+y) = (y+x) (true in N)
∃x (S(S(x)) ≤ 0) (False in N)

each sentence ϕ:
either N |= ϕ, or N |= ¬ϕ



A theory T is complete iff
T is consistent and for each sentence ϕ it holds that:

T |− ϕ or T |− ¬ϕ;
in other words, there are no independent 
sentences; 
each sentence ϕ is decidable in T.
Thm(T) – the set of all formulas provable in T:

THM(T) = {ϕ; T |− ϕ}
Th(N) – the set of all sentences True in N – the 
True arithmetic: 

Th(N) = {ϕ; N |= ϕ}; ? complete ?
THM(T) ⊆ Th(N); THM(T) = Th(N)
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|= Axioms

T: |=N Axioms
T |− Thm

|=N Th(N) = ??

|=N not Th(N)

T |− not Thm
???

???
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Special axioms to characterise
arithmetics: a) Robinson (Q)

∀x (Sx ≠ 0)
∀x∀y (Sx = Sy ⊃ x = y)
∀x (x + 0 = x)
∀x∀y (x + Sy = S(x + y))
∀x (x ∗ 0 = 0)
∀x∀y (x ∗ Sy = (x ∗ y) + x) 
∀x∀y (x ≤ y = ∃z (z + x = y) )
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Robinson’s theory Q: 
N is its model. Q is a weak theory. 
It proves only simple sentences like: 5 + 1 = 6
General simple statements like commutativity

of + or ∗, i.e., sentences like
∀x∀y (x + y = y + x), 
∀x∀y (x ∗ y = y ∗ x), 

are not provable in Q.
However, it proves all the Σ-sentences that 

should be provable, i.e., the Σ-sentences true 
in N: if σ is a Σ-sentence such that N |= σ, 
then Q |– σ.
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Σ-sentences – syntactically simple
Syntactical complexity: a number of alternating 
quantifiers. (actual infinity !)
an arithmetic formula ϕ is formed from a formula ψ by 
a bounded quantification, if ϕ has one of the following 
forms:
∀v (v < x ⊃ ψ), ∃v (v < x & ψ), ∀v (v ≤ x ⊃ ψ), 
∃v (v ≤ x & ψ), where v, x are distinct variables, 
∀v, ∃v - bounded quantifiers. 
A formula ϕ is a bounded formula if it contains only 
bounded quantifiers. A formula ϕ is a Σ-formula, if ϕ
is formed from bounded formulas using only ∧, ∨, ∃, 
and any bounded quantifiers. 
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Peano arithmetic PA
Q is Σ-complete;
PA arithmetic = Q + induction axioms:
[ϕ(0) ∧ ∀x (ϕ(x) ⊃ ϕ(Sx))] ⊃ ∀x ϕ(x) !! Actual inf.
PA is “reasonable”, it conforms to finitism: we added 
a “geometrical pattern” of formulas – axiom schema. 
N |= PA, N is a standard model. 
Terms denoting numbers: 3 = SSS0, … (numerals)
2 + 3 = SS0 + SSS0 = SSSSS0 = 5
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Peano arithmetic PA is not 
complete

PA is a strong theory and many laws of arithmetic 
are provable in it; 
however, there is a sentence(s) ϕ:
N |= ϕ but PA not |− ϕ. And, of course, 
PA not |− ¬ϕ as well, because ¬ϕ is not true in N
and PA proves only sentences true in its models.
(soundness assumption) 
Well, let us add some axioms or rules … ?
No way: you cannot know in advance, which 
should be added …
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Recursive axiomatisation
(finitism!)

A theory T is recursively axiomatized if 
there is an algorithm that for any formula ϕ
decides whether ϕ is an axiom of the theory 
or not.
Algorithm: a finite procedure that for any 
input formula ϕ gives a “Yes / No” output in a 
finite number of steps. 
Due to Church’s thesis it can be explicated by 
any  computational model, e.g., Turing 
machine. 
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PA is arithmetically sound: all arithmetic 
sentences provable in T are valid in N.

Gödel’s first theorem on incompleteness !
Let T be a theory that contains Q (i.e., the language 
of T contains the language of arithmetic and T
proves all the axioms of Q).
Let T be recursively axiomatized and arithmetically 
sound. (T |− ϕ ⇒ N |= ϕ)
Then T is an incomplete theory, i.e., there is a 
sentence ϕ independent of T: 

ϕ ∈ Th(N); ϕ ∉ Thm (T)

T proves neither ϕ nor ¬ϕ.
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What did Goedel prove?
it is not possible to find a recursively 
axiomatized consistent theory, in which all 
the true arithmetic sentences about natural 
numbers could be proved.
Either you have a (semantically complete) 
naïve arithmetic = all the sentences true in N 
– not recursively axiomatisable
Or you have an incomplete theory
Completeness recursive axiomatisation
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Summary and outline of the Proof
1. An arithmetic theory such as Peano arithmetic (PA) is 

adequate: it encodes finite sequences of numbers and defines 
sequence operations such as concatenation (sss(0),+, …).

2. In an adequate theory T we can encode the syntax of terms, 
sentences (closed formulas) and proofs. 

Let us denote the code (e.g. ASCII) of ϕ as <ϕ>. 
3. Self-Reference (diagonal) lemma: For any formula ϕ(x) (with one 

free variable) there is a sentence ψ such that ψ iff ϕ(<ψ>).
4. Let Th(N) be the set of numbers that encode true sentences of 

arithmetic (i.e. formulas true in the standard model of arithmetic), 
and Thm(T) the set of numbers that encode sentences provable 
in an adequate (sound) theory T. 

5. Since the theory is sound, Thm(T) ⊆ Th(N). 
6. It would be nice if they were the same; in that case the theory T 

would be complete. 
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Summary and outline of the Proof
7. No such luck if the theory T is recursively 

axiomatized, i.e., if the set of axioms is computable 
(algorithm … Yes, No). 

Computability of the set of axioms and completeness of 
the theory T are two goals that cannot be met together, 
because:
The set Th(N) is not even definable by an arithmetic 
sentence (that would be true if its number were in the set and 
false if not): 
Let n be a number such that n ∉ Th(N). 
Then by the Self Reference (3) there is a sentence ϕ such 
that <ϕ> = n. 
Hence ϕ iff <ϕ> ∉ Th(N) iff ϕ is not true in N iff not ϕ –
contradiction. There is no such ϕ. (Liar’s Paradox)
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Summary and outline of the Proof
8. Since undefinable implies uncomputable there will 

never be a program that would decide whether an 
arithmetic sentence is true or false (in the 
standard model of arithmetic).

9. The set Thm(T) is definable in an adequate theory, 
say Q:  
ϕ: the number <ϕ> ∈ Thm(T) iff T |− ϕ, for: 
the set of axioms is recursively enumerable, i.e., computable,
so is the set of proofs that use these axioms and 
so is the set of provable formulas, Thm(T). 
Thm(T) is definable. 
Let n ∉ Thm(T). By the Self Reference - there is a sentence 
ϕ such that <ϕ> = n. 
Hence ϕ iff <ϕ> ∉ Thm(T) iff ϕ is not provable. This is 
impossible in a sound theory: provable sentences are true. 
Hence ϕ is true but not provable in T.
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Decidability
A theory T is decidable if the set Thm(T) of 
formulas provable in T is (generally) recursive (i.e., 
computable).
If a theory is recursively axiomatized and complete, 
then it is decidable.
consequence of Gödel’s incompleteness theorem:
No recursively axiomatized theory T that contains 
Q and has a model N, is decidable: there is no 
algorithm that would decide every formula ϕ
(whether it is provable in the theory T or not).
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THM(T)-provable by T; Th(N)-
true in N; Ref(T)--T proves ¬ϕ

THM(T) Th(N) Ref(T)

axioms

If the (consistent) theory T is recursively axiomatized
and complete, then Thm(T) = Th(N), and Ref(T) is a 
complement of them. But PA is not.
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Gödelův důkaz detailněji 
1. Kódování: efektivní 1-1 zobrazení množiny  

syntaktických objektů do množiny přirozených čísel 
(injekce), např. ASCII

2. Teorie rekurzivních funkcí (po Gödelovi):
(partial) recursive functions = algorithmically computable. 
A set S is recursively enumerable if there is a partial recursive 
function f such that S is a domain of f: Dom(f) = S. 
(„počítá“ S, ale nemusí počítat komplement S) 
A set S is a (general) recursive set if its characteristic function 
is a (total) recursive function – („počítá S i komplement S“)

3. Formule definují množiny: A(x) definuje množinu AS
těch prvků a universa, pro které |=I A(x)[e], e(x) = a
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Gödelův důkaz detailněji 

4. Σ-úplnost teorie Q: Σ-sentence dokazatelné v 
Q jsou právě všechny pravdivé v N. 
Σ-formulas define just all the algorithmically 
computable, i.e., recursively enumerable sets of 
natural numbers. 

5. Dok(x) je Σ-formule, která definuje množinu 
Thm(T) – množinu čísel těch formulí, které
jsou dokazatelné v T. Tedy:

6. T |− ϕ iff <ϕ> ∈ Thm(T) iff N |= Dok(<ϕ>)
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Gödelův důkaz detailněji 

7. Gödelovo diagonální lemma: For any 
formula ψ(x) of the arithmetic language with 
one free variable there is a sentence ϕ such 
that ϕ ≡ ψ (<ϕ>) is provable in Q. Hence:

8. rovnice Q |– ϕ ≡ ψ(<ϕ>) – neznámá ϕ má vždy 
pro libovolné ψ řešení, a to nezávisle na 
kódování. 
Metafora: ϕ říká “Já mám vlastnost ψ”.



12/6/2006 Kurt Gödel 37

Diagonální lemma – netriviální
aplikace, volba predikátu ψ

Aplikace self-reference:
Alfred Tarski (slavný polský logik) aplikace 
Epimenidova paradoxu lháře („já jsem 
nepravdivá“): neexistuje definice pravdivosti 
pro všechny formule: N |= ϕ iff N |= True(<ϕ>).

Neexistuje formule True(x), která by definovala 
množinu Th(N) – kódů formulí pravdivých v N.
Q |– ω ≡ ¬True(<ω>), T |– ω ≡ ¬Tr(<ω>). But
T |– ω ≡ Tr(<ω>) – spor.
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Diagonální lemma – netriviální
aplikace, volba predikátu ψ

Gödel’s sentence claims “I am not provable”, 
Rosser’s sentence says that “each my proof is 
preceded by a smaller proof of my negation”.

9. Aplikuj diagonální lemma na ¬Dok(x) !! - žádný 
paradox, Dok(x) definuje Thm(T)!
T |− ϕ iff <ϕ> ∈ Thm(T) iff N |= Dok(<ϕ>)

10. Gödel’s diagonal formula ν such that 
Q |– ν ≡ ¬Dok(<ν>)). Thus we have: 
ν iff <ν> ∉ Thm(T)  iff ν is not provable in T.
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Gödelova formule ν je nezávislá
na teorii T a přitom pravdivá v T !

Kdyby T |− ν pak by N |= Dok(<ν>). Ale 
Dok(<ν>) je Σ-formule, tedy T |− Dok(<ν>).
Dok(<ν>) ≡ ¬ν, tedy T |− ¬ν. Spor (pokud není T 
nekonzistentní. Ale to není – má model N). 
Tedy N |= ¬Dok(<ν>) a N |= ν, ale T |− ¬ν.
T je neúplná teorie, nedemonstruje všechny
aritmetické pravdy.
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Důsledky
Žádná rekurzivně axiomatizovaná „rozumná“
aritmetika (obsahující aspoň Q) není
rozhodnutelná (algoritmus by se dal lehko 
zobecnit na dokazatelnost).
Problém logické pravdivosti není
rozhodnutelný v kalkulu PL1 – v „prázdné
teorii“ bez speciálních axiomů. 
Neexistuje algoritmus, který by rozhodoval 
dokazatelnost v kalkulu, a tedy logickou 
pravdivost.
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Alonzo Church: 
parciální rozhodnutelnost

Množina Thm(kalkulu) teorémů kalkulu je 
rekurzivně spočetná, ale není rekurzivní:
„Dostaneme se“ výpočtem – algoritmem  na 
všechny logicky pravdivé formule, ale 
nerozhodneme komplement Thm(kalkulu).
Pokud ϕ je logicky pravdivá, v konečném 
čase algoritmus (třeba rezoluční metoda) 
odpoví. Jinak může cyklovat.
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Gödel’s Second Theorem on 
incompleteness.

In any consistent recursively axiomatizable
theory T that is strong enough to encode 
sequences of numbers (and thus the 
syntactic notions of “formula”, “sentence”, 
“proof”) the consistency of the theory T is not 
provable in T.
„Já jsem nedokazatelná“ je ekvivalentní
„Neexistuje formule ϕ taková, že <ϕ> a <¬ϕ> 
jsou dokazatelné v T“.
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Proč Hilbert tak nutně potřeboval 
důkaz konzistence?

Vždyť PA má model N! Ale: tento předpoklad 
množiny N přirozených čísel jakožto modelu 
je předpoklad aktuálního nekonečna.
Co když zase „vyskočí“ paradoxy? Víme jak 
„vypadají“ hodně velká přirozená čísla?
PA  má také jiné modely, které nejsou 
isomorfní s N ! (indukce)
[ϕ(0) ∧ ∀x (ϕ(x) ⊃ ϕ(Sx))] ⊃ ∀x ϕ(x)
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Proč Hilbert tak nutně potřeboval 
důkaz konzistence?

Roughly: T |= ϕ iff T |– ϕ (strong 
Completeness). 
Now the sentence ν: T not |– ϕ, ⇒ ν is not 
valid in every model of T.  
But - standard model N |= ϕ, which is a 
model of T. 
Every model isomorphic to N is also a 
model of T; 
ν is however not valid in every model of T. 
Hence T must have a non-standard model.
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Conclusion
Gödelovy výsledky změnily tvář moderní
matematiky: rozvoj teorie rekurzivních funkcí, 
computability, computer science, … atd.
Possible impact of Gödel’s results on the philosophy 
of mind, artificial intelligence, and on Platonism ….
Gödel himself suggested that the human mind 
cannot be a machine and that Platonism is correct.
Most recently Roger Penrose has argued that “the 
Gödel’s results show that the whole programme of 
artificial intelligence is wrong, that creative 
mathematicians do not think in a mechanic way, but 
that they often have a kind of insight into the 
Platonic realm which exists independently from us”


