# Přednáška 12 

Důkazové kalkuly
Kalkul Hilbertova typu

## Formal systems, Proof calculi

A proof calculus (of a theory) is given by:
A. a language
B. a set of axioms
c. a set of deduction rules
ad $A$. The definition of a language of the system consists of:

- an alphabet (a non-empty set of symbols), and
- a grammar (defines in an inductive way a set of well-formed formulas - WFF)


## Hilbert-like calculus. Language: restricted FOPL

## Alphabet:

1. logical symbols:
(countable set of) individual variables $x, y, z, \ldots$
connectives $\neg$, $\supset$
quantifiers $\forall$
2. special symbols (of arity $n$ )
predicate symbols $\mathrm{P}^{n}, \mathrm{Q}^{n}, \mathrm{R}^{n}, \ldots$
functional symbols $\boldsymbol{f}^{n}, \mathrm{~g}^{n}, \mathrm{~h}^{n}, \ldots$
constants $a, b, c, \quad-$ functional symbols of arity 0
3. auxiliary symbols (, ), [, ], ...

Grammar:

1. terms
each constant and each variable is an atomic term
if $t_{1}, \ldots, t_{n}$ are terms, $f^{n}$ a functional symbol, then $f^{n}\left(t_{1}, \ldots, t_{n}\right)$ is a (functional) term
2. atomic formulas
if $t_{1}, \ldots, t_{n}$ are terms, $\mathrm{P}^{n}$ predicate symbol, then $\mathrm{P}^{n}\left(t_{1}, \ldots, t_{n}\right)$ is an atomic (well-formed)
formula
3. composed formulas

Let A, B be well-formed formulas. Then $\neg \mathbf{A},(\mathbf{A} \supset \mathbf{B})$, are well-formed formulas.
Let $A$ be a well-formed formula, $x$ a variable. Then $\forall x A$ is a well-formed formula.
4. Nothing is a WFF unless it so follows from 1.-3.

## Hilbert calculus

$A d B$. The set of axioms is a chosen subset of the set of WFF.

- The set of axioms has to be decidable: axiom schemes:

1. $A \supset(B \supset A)$
2. $(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C))$
3. $(\neg B \supset \neg A) \supset(A \supset B)$
4. $\forall x \mathrm{~A}(x) \supset \mathrm{A}(x / \mathrm{t}) \quad$ Term $t$ substitutable for $x$ in A
5. $(\forall x[\mathrm{~A} \supset \mathrm{~B}(x)]) \supset(\mathrm{A} \supset \forall x \mathrm{~B}(x)), \quad x$ is not free in A

## Hilbert calculus

Ad $C$. The deduction rules are of a form:
$\mathbf{A}_{1}, \ldots, \mathbf{A}_{m} \mid-\mathrm{B}_{1}, \ldots, \mathrm{~B}_{m}$ enable us to prove theorems (provable formulas) of the calculus. We say that each $B_{i}$ is derived (inferred) from the set of assumptions $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{m}$.
Rule schemas:

MP: A, $A \supset B \mid-B$
G: $\quad \mathrm{A} \mid-\forall x \mathrm{~A}$
(modus ponens)
(generalization)

## Hilbert calculus

Notes:

1. $A, B$ are not formulas, but meta-symbols denoting any formula. Each axiom schema denotes an infinite class of formulas of a given form. If axioms were specified by concrete formulas, like
2. $p \supset(q \supset p)$
3. $(p \supset(q \supset r)) \supset((p \supset q) \supset(p \supset r))$
4. $(\neg q \supset \neg p) \supset(p \supset q)$
we would have to extend the set of rules with the rule of substitution:
Substituting in a proved formula for each propositional logic symbol another formula, then the obtained formula is proved as well.

## Hilbert calculus

2. The axiomatic system defined in this way works only with the symbols of connectives $\neg, \supset$, and quantifier $\forall$. Other symbols of the other connectives and existential quantifier can be introduced as abbreviations ex definicione:

$$
\begin{aligned}
& \mathrm{A} \wedge \mathrm{~B}==_{\mathrm{df}} \neg(\mathrm{~A} \supset \neg \mathrm{~B}) \\
& \mathrm{A} \vee \mathrm{~B}==_{\mathrm{df}}(\neg \mathrm{~A} \supset \mathrm{~B}) \\
& \mathrm{A} \equiv \mathrm{~B}==_{\mathrm{df}}((\mathrm{~A} \supset \mathrm{~B}) \wedge(\mathrm{B} \supset \mathrm{~A})) \\
& \exists x \mathrm{~A}=_{\mathrm{df}} \neg \forall x \neg \mathrm{~A}
\end{aligned}
$$

The symbols $\wedge, \vee, \equiv$ and $\exists$ do not belong to the alphabet of the language of the calculus.
3. In Hilbert calculus we do not use the indirect proof.

## Hilbert calculus

4. Hilbert calculus defined in this way is sound (semantically consistent).
a) All the axioms are logically valid formulas.
b) The modus ponens rule is truth-preserving.

- The only problem - as you can easily see - is the generalisation rule.
- This rule is obviously not truth preserving: formula $\mathrm{P}(x) \supset \forall x \mathrm{P}(x)$ is not logically valid. However, this rule is tautology preserving:
- If the formula $P(x)$ at the left-hand side is logically valid, then $\forall x \mathrm{~A}(x)$ is logically valid as well.
- Since the axioms of the calculus are logically valid, the rule is correct.
- After all, this is a common way of proving in mathematics. To prove that something holds for all the triangles, we prove that for any triangle.


## A sound calculus: if |- A (provable) then |= A (True)



## Proof in a calculus

- A proof of a formula $\boldsymbol{A}$ (from logical axioms of the given calculus) is a sequence of formulas (proof steps) $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{n}$ such that:
- $A=B_{n} \quad$ (the proved formula $A$ is the last step)
- each $\mathrm{B}_{\mathrm{i}}(\mathrm{i}=1, \ldots, n)$ is either
- an axiom or
- $B_{i}$ is derived from the previous $B_{j}(j=1, \ldots, i-1)$ using a deduction rule of the calculus.
- A formula $A$ is provable by the calculus, denoted - $\mathbf{A}$, if there is a proof of $A$ in the calculus. A provable formula is called a theorem.


## Hilbert calculus

- Note that any axiom is a theorem as well. Its proof is a trivial one step proof.
- To make the proof more comprehensive, you can use in the proof sequence also previously proved formulas (theorems).
- Therefore, we will first prove the rules of natural deduction, transforming thus Hilbert Calculus into the natural deduction system.


## A Proof from Assumptions

A (direct) proof of a formula $A$ from assumptions $\boldsymbol{A}_{1}, \ldots, A_{m}$ is a sequence of formulas (proof steps) $\mathrm{B}_{1}, \ldots \mathrm{~B}_{n}$ such that:

- $\mathrm{A}=\mathrm{B}_{n} \quad$ (the proved formula A is the last step)
- each $\mathrm{B}_{\mathrm{i}}(\mathrm{i}=1, \ldots, n)$ is either
- an axiom, or
- an assumption $\mathrm{A}_{k}(1 \leq k \leq m)$, or
- $B_{i}$ is derived from the previous $B_{j}(j=1, \ldots, i-1)$ using a rule of the calculus.
A formula $A$ is provable from $A_{1}, \ldots, A_{m}$, denoted $A_{1}, \ldots, A_{m} \mid-A$, if there is a proof of $A$ from $A_{1}, \ldots, A_{m}$.


## Examples of proofs (sl. 4)

Proof of a formula schema $A \supset A$ :

1. $(A \supset((A \supset A) \supset A)) \supset((A \supset(A \supset A)) \supset(A \supset A))$ axiom $A 2: B / A \supset A, C / A$
2. $A \supset((A \supset A) \supset A)$
axiom $\mathrm{A} 1: \mathrm{B} / \mathrm{A} \supset \mathrm{A}$
3. $(A \supset(A \supset A)) \supset(A \supset A) \quad M P: 2,1$
4. $A \supset(A \supset A)$
5. $A \supset A$
axiom A1: B/A
MP:4,3 Q.E.D.
Hence: $\mid-\mathbf{A} \supset \mathbf{A}$.

## Examples of proofs

Proof of: $\mathbf{A} \supset \mathbf{B}, \mathbf{B} \supset \mathbf{C} \mid-\mathbf{A} \supset \mathbf{C}$
(transitivity of implication TI):

1. $\mathbf{A} \supset \mathbf{B}$ assumption
2. $B \supset C \quad$ assumption
3. $(A \supset(B \supset C)) \supset((A \supset B) \supset(A \supset C)) \quad$ axiom $A 2$
4. $(B \supset C) \supset(A \supset(B \supset C)) \quad$ axiom $A 1$
$A /(B \supset C), B / A$
5. $A \supset(B \supset C)$

MP:2,4
6. $(A \supset B) \supset(A \supset C)$

MP:5,3
7. $\mathbf{A} \supset \mathbf{C}$

MP:1,6 Q.E.D.
Hence: $\mathbf{A} \supset \mathbf{B}, \mathbf{B} \supset \mathbf{C} \mid-\mathbf{A} \supset \mathbf{C}$.

## Examples of proofs

$\quad 1-\mathbf{A}(x / t) \supset \exists x \mathbf{A}(\boldsymbol{x})$
(the ND rule - existential generalisation)
Proof:

|  | $\forall x \neg \mathbf{A}(\mathrm{x}) \supset \neg \mathrm{A}(\mathrm{x} / \mathrm{t})$ | axiom A4 theorem of type $\neg \neg \mathrm{C} \supset \mathrm{C}$ (see below) |  |
| :---: | :---: | :---: | :---: |
| 2. | $\neg \neg \forall x \neg \mathrm{~A}(x) \supset \forall x \neg \mathrm{~A}(\mathrm{x})$ |  |  |
| 3. | $\neg \neg \forall x \neg \mathrm{~A}(x) \supset \neg \mathrm{A}(x / \mathrm{t})$ | $\mathrm{C} \supset \mathrm{D}, \mathrm{D}$ | $-\mathrm{C} \supset \mathrm{E}:$ |
| 4. | $\neg \forall x \neg \mathbf{A}(x)=\exists x \mathbf{A}(x)$ | Intr. $\exists$ ac | definition |
| 5 | $\neg \exists \mathrm{xA}(\mathrm{x}) \supset \neg \mathrm{A}(\mathrm{x} / \mathrm{t})$ | substitut | into 3 |
| 6. | $[\neg \exists x \mathbf{A}(x) \supset \neg \mathrm{A}(x / t)] \supset[$ | $\supset \exists x$ A $(x)$ ] | axiom A3 |
| 7. | $\mathrm{A}(\mathrm{x} / \mathrm{t}) \supset \exists \mathrm{xA}(\mathrm{x})$ | MP: 5, 6 | Q.E.D. |

## Examples of proofs

$\mathbf{A} \supset \mathbf{B}(x) \mid-\mathbf{A} \supset \forall \mathbf{x B}(x)(x$ is not free in $A)$ Proof:

1. $\mathbf{A} \supset \mathbf{B}(x) \quad$ assumption
2. $\forall x[\mathbf{A} \supset \mathbf{B}(x)] \quad$ Generalisation:1
3. $\quad \forall x[A \supset B(x)] \supset[A \supset \forall x B(x)]$ axiom $A 5$
4. $\quad \mathbf{A} \supset \forall \mathbf{x B}(\boldsymbol{x}) \quad \mathrm{MP}: 2,3 \quad$ Q.E.D.

## The Theorem of Deduction

- Let A be a closed formula, B any formula. Then:
- $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{k} \mid-\mathbf{A} \supset \mathbf{B}$ if and only if $A_{1}, A_{2}, \ldots, A_{k}, A \mid-B$.

Remark: The statement
a) if $\mid-\mathrm{A} \supset \mathrm{B}$, then $\mathrm{A} \mid-\mathrm{B}$
is valid universally, not only for A being a closed formula (the proof is obvious - modus ponens).
On the other hand, the other statement
b) If $\mathbf{A} \mid-\mathrm{B}$, then $\mid-\mathbf{A} \supset \mathbf{B}$
is not valid for an open formula $A$ (with at least one free variable).

- Example: Let $\mathrm{A}=\mathrm{A}(x), \mathrm{B}=\forall x \mathrm{~A}(x)$.

Then $\mathbf{A}(\boldsymbol{x}) \mid-\forall x \mathbf{A}(x)$ is valid according to the generalisation rule.
But the formula $\mathbf{A}(\boldsymbol{x}) \supset \forall \mathbf{x A}(\boldsymbol{x})$ is generally not logically valid, and therefore not provable in a sound calculus.

## The Theorem of Deduction

- Proof (we will prove the Deduction Theorem only for the propositional logic):

1. $\rightarrow$ Let $A_{1}, A_{2}, \ldots, A_{k} \mid-A \supset B$.

Then there is a sequence $B_{1}, B_{2}, \ldots, B_{n}$, which is the proof of $\mathbf{A} \supset \mathbf{B}$ from assumptions $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{\boldsymbol{k}}$. The proof of $B$ from $A_{1}, A_{2}, \ldots, A_{k}, A$ is then the sequence of formulas $B_{1}, B_{2}, \ldots, B_{n}, A, B$, where $B_{n}=A \supset B$ and $B$ is the result of applying modus ponens to formulas $\mathbf{B}_{n}$ and $\mathbf{A}$.

## The Theorem of Deduction

2. $\leftarrow$ Let $A_{1}, A_{2}, \ldots, A_{k}, A \mid-B$.

Then there is a sequence of formulas $C_{1}, C_{2}, \ldots, C_{r}=B$, which is the proof of $B$ from $A_{1}, A_{2}, \ldots, A_{k}, A$. We will prove by induction that the formula $\mathbf{A} \supset \mathbf{C}_{i}$ (for all $i=1,2, \ldots, r$ ) is provable from $\mathbf{A}_{1}, \mathbf{A}_{2}, \ldots, \mathbf{A}_{k}$. Then also $\mathbf{A} \supset \mathbf{C}_{r}$ will be proved.
a) Base of the induction: If the length of the proof is $=1$, then there are possibilities:

1. $\mathrm{C}_{1} \quad$ is an assumption $\mathrm{A}_{\mathrm{i}}$, or axiom, then:
2. $\mathrm{C}_{1} \supset\left(\mathrm{~A} \supset \mathrm{C}_{1}\right) \quad$ axiom A 1
3. $A \supset C_{1}$

MP: 1,2
Or, In the third case $C_{1}=A$, and we are to prove $A \supset A$ (see example 1).
b) Induction step: we prove that on the assumption of $\mathbf{A} \supset \mathbf{C}_{\boldsymbol{n}}$ being proved for $\boldsymbol{n}=\mathbf{1}, \mathbf{2}, \ldots, \mathrm{i}-1$ the formula $\mathbf{A} \supset \boldsymbol{C}_{n}$ can be proved also for $\boldsymbol{n}=\boldsymbol{i}$.
For $\mathrm{C}_{i}$ there are four cases:

1. $C_{i}$-is an assumption of $A_{i}$,
2. $C_{i}$ is an axiom,
3. $C_{i}$ is the formula $A$,
4. $C_{i}$ is an immediate consequence of the formulas $C_{j}$ and $C_{k}=\left(C_{j} \supset C_{i}\right)$, where $j, k<i$.

In the first three cases the proof is analogical to a).
In the last case the proof of the formula $\mathbf{A} \supset \mathbf{C}_{\mathbf{i}}$ is the sequence of formulas:

1. $A \supset C_{j}$
induction assumption
2. $A \supset\left(C_{j} \supset C_{i}\right)$
induction assumption
3. $\left(A \supset\left(C_{j} \supset C_{i}\right)\right) \supset\left(\left(A \supset C_{j}\right) \supset\left(A \supset C_{i}\right)\right)$

A2
4. $\left(A \supset C_{j}\right) \supset\left(A \supset C_{i}\right)$

MP: 2,3
5. $\quad\left(A \supset C_{i}\right)$

MP: 1,4

## Semantics

- A semantically correct (sound) logical calculus serves for proving logically valid formulas (tautologies). In this case the
- axioms have to be logically valid formulas (true under all interpretations), and the
- deduction rules have to make it possible to prove logically valid formulas. For that reason the rules are either truth-preserving or tautology preserving, i.e., $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{m} \mid-\mathrm{B}_{1}, \ldots, \mathrm{~B}_{m}$ can be read as follows:
- if all the formulas $A_{1}, \ldots, A_{m}$ are logically valid formulas, then $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{m}$ are logically valid formulas.


## Theorem on Soundness (semantic consistence)

- Each provable formula in the Hilbert calculus is also logically valid formula: If $\mid-\mathbf{A}$, then $\mid=A$.
Proof (outline):
- Each formula of the form of an axiom schema of A1 - A5 is logically valid (i.e. true in every interpretation structure I for any valuation $v$ of free variables).
- Obviously, MP (modus ponens) is a truth preserving rule.
- Generalisation rule: $\mathbf{A}(x) \mid-\forall x \mathbf{A}(x)$ ?


## Theorem on Soundness (semantic consistence)

- Generalisation rule $\mathbf{A}(x) \mid-\forall x \mathbf{A}(x)$ is tautology preserving:
- Let us assume that $\mathrm{A}(\mathrm{x})$ is a proof step such that in the sequence preceding $\mathrm{A}(x)$ the generalisation rule has not been used as yet.
- Hence $\mid=\mathbf{A}(x)$ (since it has been obtained from logically valid formulas by using at most the truth preserving modus ponens rule).
- It means that in any structure I the formula $A(x)$ is true for any valuation e of $x$. Which, by definition, means that $\mid=\forall x \mathrm{~A}(x)$ (is logically valid as well).


## Hilbert \& natural deduction

- According to the Deduction Theorem each theorem of the implication form corresponds to a deduction rule(s), and vice versa. For example:

| Theorem | Rule(s) |
| :---: | :---: |
| $1-\mathrm{A} \supset((\mathrm{A} \supset \mathrm{B}) \supset \mathrm{B})$ | $\mathbf{A}, \mathbf{A} \supset \mathbf{B} \mid-\mathbf{B} \quad$ (MP rule) |
| $1-A \supset(B \supset A) \quad$ ax. $A 1$ | $A\|-B \supset A ; A, B\|-A$ |
| $\underline{-}$ | A \|-A |
| $1-(A \supset B) \supset((B \supset C) \supset(A \supset C))$ | $\begin{aligned} & A \supset B \mid-(B \supset C) \supset(A \supset C) ; \\ & A \supset B, B \supset C \mid-A \supset C \quad \text { rule } \bar{l} / \end{aligned}$ |

Example: a few simple theorems and the corresponding (natural deduction) rules:

| 1. |  | A, $\neg \mathrm{A} \mid-\mathrm{B}$ |  |
| :---: | :---: | :---: | :---: |
| 2. | $1-A \supset A \vee B ; 1-B \supset A \vee B$ | A $\|-A \vee B ; B\|-A \vee B$ | ID |
| 3. | $1-\neg \neg A \supset A$ | $\neg \neg$ \|-A | EN |
| 4. | $1-\mathrm{A} \supset \neg \neg \mathrm{A}$ | A $1-\neg \neg A$ | IN |
| 5. | $1-(A \supset B) \supset(\neg \mathrm{B} \supset \neg \mathrm{A})$ | $\mathrm{A} \supset \mathrm{B} \mid-\neg \mathrm{B} \supset \neg \mathrm{A}$ | TR |
| 6. | $1-A \wedge B \supset A ; 1-A \wedge B \supset B$ | $A \wedge B \mid-A, B$ | EC |
| 7. | $1-A \supset(B \supset A \wedge B) ; ~-~ B \supset(A \supset A \wedge B)$ | $A, B \mid-A \wedge B$ | IC |
| 8. | $1-\mathrm{A} \supset(\mathrm{B} \supset \mathrm{C}) \supset(\mathrm{A} \wedge \mathrm{B} \supset \mathrm{C})$ | $\mathrm{A} \supset(\mathrm{B} \supset \mathrm{C})-\mathrm{A} \wedge \mathrm{B} \supset \mathrm{C}$ |  |

## Some proofs

Ad 1. $\mid-\mathrm{A} \supset(\neg \mathrm{A} \supset \mathrm{B})$; i.e.: $\mathrm{A}, \neg \mathrm{A} \mid-\mathrm{B}$.
Proof: (from a contradiction |-- anything)

1. A
2. $\neg \mathrm{A}$
3. $(\neg B \supset \neg A) \supset(A \supset B) \quad A 3$
4. $\neg A \supset(\neg B \supset \neg A) \quad A 1$
5. $\neg B \supset \neg A$
6. $A \supset B$
7. B
assumption
assumption

MP: 2,4
MP: 5,3
MP: 1,6 Q.E.D.

## Some proofs

Ad 2. $\mid-\mathbf{A} \supset \mathbf{A} \vee B$, i.e.: $\mathbf{A} \mid-\mathbf{A} \vee \mathbf{B}$.
(the rule ID of the natural deduction)
Using the definition abbreviation
$A \vee B={ }_{d f} \neg A \supset B$,
we are to prove the theorem:
$1-A \supset(\neg A \supset B)$, i.e.
the rule $\mathbf{A}, \neg \mathbf{A} \mid-\mathbf{B}$,
which has been already proved.

## Some proofs

Ad 3. $\mid-\neg \neg \mathbf{A} \supset \mathbf{A}$; i.e.: $\neg \neg \mathbf{A} \mid-\mathbf{A}$. Proof:

| 1. $\neg \neg A$ | assumption |
| :--- | :--- |
| 2. $(\neg A \supset \neg \neg \neg A) \supset(\neg \neg A \supset A)$ | axiom A3 |
| 3. $\neg \neg A \supset(\neg A \supset \neg \neg \neg A)$ | theorem ad 1. |
| 4. $\neg A \supset \neg \neg \neg A$ | MP: 1,3 |
| 5. $\neg \neg A \supset A$ | MP: 4,2 |
| 6. $A$ | MP: 1,5 |
| Q.E.D. |  |

## Some proofs

Ad 4. $\mid-\mathrm{A} \supset \neg \neg$; i.e.: $\mathrm{A} \mid-\neg \neg$.
Proof:

1. $A$ assumption
2. $(\neg \neg \neg \mathrm{A} \supset \neg \mathrm{A}) \supset(\mathrm{A} \supset \neg \neg \mathrm{A}) \quad$ axiom A 3
3. $\neg \neg \neg A \supset \neg A$
4. $A \supset \neg \neg A$
Q.E.D.
theorem ad 3.
MP: 3,2

## Some proofs

Ad 5. $\mid-(A \supset B) \supset(\neg B \supset \neg A)$, i.e.: $(A \supset B) \mid-(\neg B \supset \neg A)$. Proof:

1. $A \supset B$
2. $\neg \neg A \supset A$
3. $\neg \neg \mathrm{A} \supset \mathrm{B}$
4. $B \supset \neg \neg B$
5. $\quad \mathrm{A} \supset \neg \neg \mathrm{B}$
6. $\neg \neg \mathrm{A} \supset \neg \neg \mathrm{B}$
7. $(\neg \neg \mathrm{A} \supset \neg \neg \mathrm{B}) \supset(\neg \mathrm{B} \supset \neg \mathrm{A})$
8. $\neg \mathrm{B} \supset \neg \mathrm{A}$
Q.E.D.

## Some proofs

Ad 6. $\mid-(A \wedge B) \supseteq A$, i.e.: $A \wedge B \mid-A$.
(The rule EC of the natural deduction)
Using definition abbreviation $\mathbf{A} \wedge B=_{\text {df }} \neg(A \supset \neg B)$ we are to prove

$$
\mid-\neg(A \supset \neg B) \supset A \text {, i.e.: } \neg(A \supset \neg B) \mid-A .
$$

Proof:

1. $\neg(A \supset \neg B)$
assumption
2. $(\neg \mathrm{A} \supset(\mathrm{A} \supset \neg \mathrm{B})) \supset(\neg(\mathrm{A} \supset \neg \mathrm{B}) \supset \neg \neg \mathrm{A})$
3. $\neg \mathrm{A} \supset(\mathrm{A} \supset \neg \mathrm{B})$
4. $\neg(\mathrm{A} \supset \neg \mathrm{B}) \supset \neg \neg \mathrm{A}$ theorem ad 5. theorem ad 1.
MP: 3,2
5. $\neg \neg A$
6. $\neg \neg A \supset A$
7. A
Q.E.D.
theorem ad 3.
MP: 5,6

## Some meta-rules

Let $T$ is any finite set of formulas: $T=\left\{A_{1}, A_{2}, . ., A_{n}\right\}$. Then (a) if $\mathrm{T}, \mathrm{A} \mid-\mathrm{B}$ and $\mid-\mathrm{A}$, then $\mathrm{T} \mid-\mathrm{B}$.

It is not necessary to state theorems in the assumptions.
(b) if $\mathrm{A} \mid-\mathrm{B}$, then $\mathrm{T}, \mathrm{A} \mid-\mathrm{B}$. (Monotonicity of proving)
(c) if $\mathrm{T} \mid-\mathrm{A}$ and $\mathrm{T}, \mathrm{A} \mid-\mathrm{B}$, then $\mathrm{T} \mid-\mathrm{B}$.
(d) if $\mathrm{T} \mid-\mathrm{A}$ and $\mathrm{A} \mid-\mathrm{B}$, then $\mathrm{T} \mid-\mathrm{B}$.
(e) if $\mathrm{T}|-\mathrm{A} ; \mathrm{T}|-\mathrm{B} ; \mathrm{A}, \mathrm{B} \mid-\mathrm{C}$ then $\mathrm{T} \mid-\mathrm{C}$.
(f) if $\mathrm{T} \mid-\mathrm{A}$ and $\mathrm{T} \mid-\mathrm{B}$,
then $\mathrm{T} \mid-\mathrm{A} \wedge \mathrm{B}$.
(Consequences can be composed in a conjunctive way.)
(g) $\quad \mathrm{T} \mid-\mathrm{A} \supset(\mathrm{B} \supset \mathrm{C})$ if and only if $\mathrm{T} \mid-\mathrm{B} \supset(\mathrm{A} \supset \mathrm{C})$.
(The order of assumptions is not important.)
(h) $\quad \mathbf{T}, \mathbf{A} \vee \mathbf{B} \mid-\mathbf{C}$ if and only if both $\mathbf{T}, \mathbf{A} \mid-\mathbf{C}$ and $\mathbf{T}, \mathbf{B} \mid-\mathbf{C}$.
(Split the proof whenever there is a disjunction in the sequence - meta-rule of the natural deduction)
(i) if $\mathrm{T}, \mathrm{A} \mid-\mathrm{B}$ and if $\mathrm{T}, \neg \mathrm{A} \mid-\mathrm{B}$, then $\mathrm{T} \mid-\mathrm{B}$.

## Proofs of meta-rules <br> (a sequence of rules)

Ad (h) $\Rightarrow$ :
Let $\mathrm{T}, \mathrm{A} \vee \mathrm{B} \mid-\mathrm{C}$, we prove that: $\mathrm{T}, \mathrm{A}|-\mathrm{C} ; \mathrm{T}, \mathrm{B}|-\mathrm{C}$.
Proof:

1. $A \mid-A \vee B$
2. $T, A \mid-A \vee B$
3. $\mathrm{T}, \mathrm{A} \vee \mathrm{B} \mid-\mathrm{C}$ assumption
4. $\mathrm{T}, \mathrm{A} \mid-\mathrm{C}$
5. T, B |-C
Q.E.D.
the rule ID
meta-rule (b): 1
meta-rule (d): 2,3
analogically to 4 .
Q.E.D.

## Proofs of meta-rules (a sequence of rules)

```
Ad (h) \Leftarrow:
Let T, A |- C; T, B |- C, we prove that T, A v B |- C.
    Proof:
    1. T,A|-C assumption
    2. T|-A \supset\mathbf{C deduction Theorem:1}
    3. T |-\neg\mathbf{C}\supset\neg\mathbf{A} meta-rule (d): 2, (the rule TR of natural deduction)
    4. T, ᄀ\mathbf{C L}\neg\mathbf{A}
    5. T, \C - \negB analogical to 4.
    6. T, \negC | \negA ^\negB meta-rule (f): 4,5
    7. }\neg\mathbf{A}\wedge\neg\mathbf{B |}-\neg(\mathbf{A}\vee\mathbf{B})\quad\mathrm{ de Morgan rule (prove it!)
    8. T, ᄀC - \neg(A \vee B) meta-rule (d): 6,7
    9. T |-\negC }\supset\neg(\mathbf{A}\veeB) deduction theorem: 8
    10. T |-A\vee B}\supset\mathbf{C}\mathrm{ meta-rule (d): 9. (the rule TR)
    11. T, A \vee B |-C deduction theorem: 10
    Q.E.D.
```


## Proofs of meta-rules <br> (a sequence of rules)

Ad (i):
Let $\mathrm{T}, \mathrm{A}|-\mathrm{B} ; \mathrm{T}, \neg \mathrm{A}|-\mathrm{B}$, we prove $\mathrm{T} \mid-\mathrm{B}$.
Proof:

1. $\mathrm{T}, \mathrm{A} \mid-\mathrm{B}$ assumption
2. $\mathrm{T}, \neg \mathrm{A} \mid-\mathrm{B}$ assumption
3. $\mathrm{T}, \mathrm{A} \vee \neg \mathrm{A} \mid-\mathrm{B}$ meta-rule $(\mathrm{h}): 1,2$
4. $\quad \mathrm{T} \mid-\mathrm{B} \quad$ meta-rule (a): 3

## A Complete Calculus: if $\mid=\mathbf{A}$ then $\mid-\mathbf{A}$

- Each logically valid formula is provable in the calculus
- The set of theorems = the set of logically valid formulas (the red sector of the previous slide is empty)
- Sound (semantic consistent) and complete calculus: |= A iff |- A
- Provability and logical validity coincide in FOPL ( $1^{\text {st}}$-order predicate logic)
- Hilbert calculus is sound and complete


## Properties of a calculus: deduction rules, consistency

- The set of deduction rules enables us to perform proofs mechanically, considering just the symbols, abstracting of their semantics. Proving in a calculus is a syntactic method.
- A natural demand is a syntactic consistency of the calculus.
- A calculus is consistent iff there is a WFF $\varphi$ such that $\varphi$ is not provable (in an inconsistent calculus everything is provable).
- This definition is equivalent to the following one: a calculus is consistent iff a formula of the form $A \wedge \neg A$, or $\neg(A \supset A)$, is not provable.
- A calculus is syntactically consistent iff it is sound (semantically consistent).


## Sound and Complete Calculus: |= A iff |- A

- Soundness
(an outline of the proof has been done)
- In 1928 Hilbert and Ackermann published a concise small book Grundzüge der theoretischen Logik, in which they arrived at exactly this point: they had defined axioms and derivation rules of predicate logic (slightly distinct from the above), and formulated the problem of completeness. They raised a question whether such a proof calculus is complete in the sense that each logical truth is provable within the calculus; in other words, whether the calculus proves exactly all the logically valid FOPL formulas.
- Completeness Proof:
- Stronger version: if $\boldsymbol{T}$ |= $\varphi$, then $T$ |- $\varphi$. Kurt Gödel, 1930
- A theory $\boldsymbol{T}$ is consistent iff there is a formula $\varphi$ which is not provable in T: not $T$ I- $\varphi$.


## Hilbert Calculus: if $T \mid=\varphi$, then

 $T \mid-\varphi$- The proof of the Completeness theorem is based on the following Lemma:
Each consistent theory has a model.
- if $\boldsymbol{T} \mid=\varphi$, then $\boldsymbol{T} \mid-\varphi$ iff
- if not $\mathrm{T} \mid-\varphi$, then $\operatorname{not} \mathrm{T} \mid=\varphi \Rightarrow$
- $\{\mathbf{T} \cup \neg \varphi$ \} does not prove $\varphi$ as well
( $\neg \varphi$ does not contradict T) $\Rightarrow$
- $\{T \cup \neg \varphi\}$ is consistent, it has a model $\mathrm{M} \Rightarrow$
- M is a model of T in which $\varphi$ is not true $\Rightarrow$
- $\varphi$ is not entailed by $\mathrm{T}: \mathbf{T} \mid \neq \varphi$


## Properties of a calculus: Hilbert calculus is not decidable

- There is another property of calculi. To illustrate it, let's raise a question: having a formula $\varphi$, does the calculus decide $\varphi$ ?
- In other words, is there an algorithm that would answer Yes or No, having $\varphi$ as input and answering the question whether $\varphi$ is logically valid or no? If there is such an algorithm, then the calculus is decidable.
- If the calculus is complete, then it proves all the logically valid formulas, and the proofs can be described in an algorithmic way.
- However, in case the input formula $\varphi$ is not logically valid, the algorithm does not have to answer (in a final number of steps).
- Indeed, there are no decidable 1st order predicate logic calculi, i.e., the problem of logical validity is not decidable in the FOPL.
- (the consequence of Gödel Incompleteness Theorems)


## Provable = logically true? <br> Provable from ... = logically entailed by ...?

- The relation of provability $\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n} \mid-\mathbf{A}\right)$ and the relation of logical entailment ( $\left.\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n} \mid=\mathrm{A}\right)$ are distinct relations.
- Similarly, the set of theorems $\mid-\mathbf{A}$ (of a calculus) is generally not identical to the set of logically valid formulas |= A.
- The former is syntactic and defined within a calculus, the latter independent of a calculus, it is semantic.
- In a sound calculus the set of theorems is a subset of the set of logically valid formulas.
- In a sound and complete calculus the set of theorems is identical with the set of formulas.


## Hilbert Calculus



