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'Formal systems, Proof
calcul

A proof calculus (of a theory) is given by:

A. alanguage
B. a set of axioms
C. a set of deduction rules

ad A. The definition of a language of the system
consists of:

® an alphabet (a non-empty set of symbols), and

® a grammar (defines in an inductive way a set of
well-formed formulas - WFF)
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Hilbert-like calculus.
Language: restricted FOPL

Alphabet:

1. logical symbols: SRS :
(countable set of) individual variables x, y, z, ...
connectives -, O
quantifiers Y

2. special symbols (of arity n)
predicate symbols P», Qn, Rn, ...
functional symbols fr, gn, hn, ... :
constants a, b, ¢, - functional symbols of arity 0O

3. auxiliary symbols (, ), [, 1, ...

Grammar:

1. terms ; : :
each constant and each variable is an atomic term : _
Itf t,, ..., t, are terms, fn a functional symbol, then fn(t,, ..., t,) is a (functional)
erm

2. atomic formulas : : ,
if t;, ..., t, are terms, Pr predicate symbol, then Pn(t,, ..., t,) is an atomic (well-
formed) formula

3. composed formulas
Let A, B be well-formed formulas. Then - A, (A>B), are well-formed formulas.
Let A be a well-formed formula, x a variable. Then VxA is a well-formed formula.

4. Nothing is a WFF unless it so follows from 1.-3. 3
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Hilbert calculus

Ad B. The set of axioms is a chosen subset of the set of
WFF.

The set of axioms has to be decidable: axiom schemes:

A> (B>A)

(A>(B>C))>((A>B)>(A>())

(-B > -A) > (A > B)

Vx A(x) o A(x/t) Term t substitutable for x in A
(Vx[A 2 B(x)D o (A > VxB(x)), xisnotfreeinA

T miiou i i o
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Hilbert calculus

Ad C. The deduction rules are of a form:

Al’lll'Am |- Bl’lll’Bm

enable us to prove theorems (provable formulas)
of the calculus. We say that each B; is derived
(inferred) from the set of assumptions A4,...,A,.

Rule schemas:

MP: AAA>B |- B (modus ponens)
G: A|- VxA (generalization)
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Hilbert calculus

Notes:

1. A, B are not formulas, but meta-symbols denoting any formula.
Each axiom schema denotes an Infinite class of formulas of a
given form. If axioms were specified by concrete formulas, like

1l.p>(q>p)
2.(p2(>2n)>{(p=>2q)>(p2r))
3.(-g>-p)>(p>0)

we would have to extend the set of rules with the rule of
substitution:

Substituting in a proved formula for each propositional logic
symbcl)ll another formula, then the obtained formula is proved
as well.



—_—

‘_)7_/_/17 —

Hilbert calculus

2.

3.

The axiomatic system defined in this way works only

with the symbols of connectives -, o, and quantifier V.

Other symbols of the other connectives and existential
uantifier can be introduced as abbreviations ex
efinicione:

A”"B 4 A D =B)

A'B s (A > B)
A=B=4 ((A>B)"(B>A))
AxXA =4 -~ Vx -A

The symbols %, Y, = and 3 do not belong to the
alphabet of the language of the calculus.

In Hilbert calculus we do not use the indirect proof.
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Hilbert calculus

4. Hilbert calculus defined in this way is sound (semantically
consistent).

a) All the axioms are logically valid formulas.
b) The modus ponens rule is truth-preserving.

® Thle only problem - as you can easily see - is the generalisation
rule.

® This rule is obviously not truth preserving: formula P(x) > VxP(x) is
not logically valid. However, this rule is tautology preserving:

® If the formula P(x) at the left-hand side is logically valid (or
true in an interpretation), then VxA(x) is logically valid (or
true in an interpretation) as well.

® Since the axioms of the calculus are logically valid, the rule is correct.

® After all, this is a common way of proving in mathematics. To prove
that siomething holds for all the triangles, we prove that for any
triangle.
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A sound calculus:

if |- A (provable) then |= A (True)

EA
WFF  FA

LA

Theorems
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Proof In a calculus

A proof of a formula A (from logical axioms of the
given calculus) is a sequence of formulas (proof steps)
B.,..., B, such that:

A = B, (the proved formula A is the last step)
each B; (i=1,...,n) is either

® an axiom or
® B, is derived from the previous B; (j=1,...,i-1) using a deduction
rule of the calculus.

A formula A is provable by the calculus, denoted
l— A, if there is a proof of A in the calculus. A provable
ormula is called a theorem.

10
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Hilbert calculus

Note that any axiom is a theorem as well. Its
proof is a trivial one step proof.

To make the proof more comprehensive, you
can use In the proof sequence also
previously proved formulas (theorems).

Therefore, we will first prove the rules of
natural deduction, transforming thus Hilbert
Calculus into the natural deduction system.

11



A Proof from Assumptlons

A (direct) proof of a formula A from assumptions
A, ...,A, I1s a sequence of formulas (proof steps) B,,...B,
such that:

A = B, (the proved formula A is the last step)

each B, (i=1,...,n) is either

® an axiom, or
® an assumption A, (1 <k <m), or

® B, is derived from the previous B; (j=1,...,i-1) using a rule of the
calculus.

A formula A is provable from A,, ..., A,, denoted A,,
«An |- A, if there is a proof of A from A;,...,A,.

12
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Examples of proofs (sl. 4)

Proof of a formula schema A o A:

1.(A>o((AoA)oA)>((A>o(A>A))D> (A
> A)) axiom A2: B/A o A, C/A

2.A> ((A> A) o A)axiom Al: B/A>o A
3.(A> (A> A) o (A> A) MP:2,1
4. A o (A o A) axiom Al: B/A

5,A> A MP:A4,3 Q.E.D.

Hence: |- A> A.

13
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Examples of proofs

Proof of: A o> B, B o C |- A o C (transitivity of
implication TI):

1. A o B assumption

2. B o C assumption

3.(A>(B>C))o ((A>B) > (A> C)) axiom A2
4.(B > C)> (A >(B>C axiom Al A/(B
= é)’ B/A) ( ( )) /(
5.A o (B o C) MP:2,4

6. (A > B)> (A>(QC) MP:5,3

7.A o> CMP:1,6 Q.E.D.

Hence: Ao B,BoC|- Ao C.

14
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Examples of proofs

|- AXx/t) o AxAX) (the ND rule - existential generalisation)

Proof:
1. Vx-AMX) o -AX/D axiom A4
2. 2 Vx-AMX) o Vx -A(X) theorem of type ——-C o> C
(see below)
3. = Vx -AO) o -AXx/P) CobbokElE Eo5E2 1 [
4., -~Vx-AX) = IAxAX) Intr. 3 acc. (by definition)
5. —3dxAX) o - Alx/t) substitution: 4 into 3
6. [IAXAO) o -AX/B)] o [AO/Y) o AXAO)] axiom A3
7. AMX/D o> AXAX) MP: 5,6 Q.E.D.

15
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Examples of proofs

A>S BOO |- Ao VxB(X) (xis notfreein A)

Proof:

1. A o BX) assumption

2. VX[A o B(OX)] Generalisation:1

3. VX[A o> BOO] o [A o VXBO)] axiom A5
4. A o YxB(O) MP: 2,3 Q.E.D.

16



Deduction

Let A be a closed formula, B any formula. Then:
A, A,...,A |- A> B ifandonly if Ay, Azyeen)Ar, A |- B.

Remark: The statement

a)if |- A> B, then A|- B

is valid universally, not only for A being a closed formula (the proof
is obvious - modus ponens¥.

On the other hand, the other statement

b)If A |- B, then |- A> B

is not valid for an open formula A (with at least one free
variable).

Example: Let A = A(x), B = VxA(x).
Then A(x) |- VxA(x) is valid according to the generalisation rule.

But the formula A(x) > VxAOO is generally not logically valid, and
therefore not provable in a sound calculus. 17



“The Theorem of

Prog |(‘\'/Ive Wi I prove the Deduction Theorem only
for the propositional logic):

1. - Let A, A,,...,Ac |- AD B.

Then there is a sequence B,, B,,...,B,, which is the
proof of A o B from assumptions A,,A,,...,A..

The proof of B from A,, A,,..., A, A is then the
sequence of formulas B,, B,,...,B,, A, B, where B,
= A o B and B is the result of applying modus
ponens to formulas B, and A.

18



e Theorem of
Deduction

Then there is a sequence of formulas C,,C,,...,C, |= B, which is the proof of B from A,,A,,...,A,, A.
We will prove by induction that the formula A o C; (forall i = 1, 2,...,r) is provable from A, A,,..., A,.
Then also A o C, will be proved.

a) Base of the induction: If the length of the proof is = 1, then there are possibilities:
1. G is an assumption A;, or axiom, then:

2. G, (A2 () axiom Al

BB EnGraMPalv2

Or, In the third case C; = A, and we are to prove A o A (see example 1).

b) Induction step: we prove that on the assumption of A o C, being proved forn = 1, 2, ..., i-1 the
formula

A o C,can be proved also for n = i.
For C; there are four cases:

1. C is an assumption of A,

2. G, is an axiom,

3. C is the formula A,

4. C is an immediate consequence of the formulas C; and C, = (C; = C), where j, k < i. In the first
three cases the proof is analogical to a). In the last case the pr0014 of the formula A o C; is the
sequence of formulas:

1. Ao G induction assumption

2. Ao (G C) induction assumption

3. (A> (o C))>o>((A>C)> (Ao C)) A2
4. (Ao C)> (Ao () MP: 2,3

5. (Ao (C) MP:1,4 Q.E.D

19
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Semantics

A semantically correct (sound) logical calculus
serves for proving logically valid formulas
(tautologies). In this case the

axioms have to be logically valid formulas (true
under all interpretations), and the

deduction rules have to make it possible to prove
logically valid formulas. For that reason the rules
are either truth-preserving or tautology
preserving, i.e., A,,...,A, |- Bi,....B, can be read
as follows:

® if all the formulas A,,...,A,, are logically valid formulas, then
B.,...,.B,, are logically valid formulas.

20



Theorem on Soundness (semantic
consistence)
Each provable formula in the Hilbert calculus is also
logically valid formula: If |- A, then |= A.

Proof (outline):

Each formula of the form of an axiom schema of
Al - A5 is logically valid (i.e. true Iin every
interpretation structure | for any valuation v of free
variables).

Obviously, MP (modus ponens) is a truth preserving
rule.

Generalisation rule: A(X) |- YxAOO ?



Theorem on Soundness (semantic
consistence)

Generalisation rule AOGO |- YxAO) is tautology
preserving:

Let us assume that A(x) is a proof step such that in
the sequence preceding A(x) the generalisation rule
has not been used as yet.

Hence |= A(x) (since it has been obtained from
logically valid formulas by using at most the truth
preserving modus ponens rule).

It means that in any structure | the formula A(x) is true
for any valuation e of x. Which, by definition, means
that |= VxA(x) (is logically valid as well).

22



Hilbert & natural

deduction

According

to the Deduction Theorem each
theorem of the implication form corresponds to a

deduction rule(s), and vice versa.

For example:

Theorem

—-A> ((A> B) = B)
—-A> (B> A) ax. A1
—AD A

Rule(s)

A, A>B|-B (MPrule)
Al-BoA; AB|-A
Al-A

-(A>B)>((B>2C)> (A>
C))

A>B|-(B>C)> (A>C)
A>oB,BoC|-A>C /rule
Tl/

23
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and th

corresponding (natural deduction) rules:

~ Example: a few simple theorems

1. |FA>(-A>B);, |--A> (A>B) A, -A|-B

2. |-A>A'B; |-Bo>A'B AEA B BA'E ID
3. |---ASA --A|-A EN
4. ||-A>--A Al-—--A IN
5. | -(A>B)> (=B > -A) A>B|--B>-A TR
6. FA'BoA FABESB A"B|-A, B EC
7. [EAS(BOA'BrEBS(ASA'B) [ABEA'B IC
& =10 B-6j> 1. F-¢) N B-Cil L B¢
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Some proofs

Adl. |- Ao (-A> B); i.e.. A, A |- B.

Proof: (from a contradiction |- anything)

Ol o

A

- A

(-B > =A) o (A> B)
-A > (=B o =A)
-B o -A

A>B

B

assumption
assumption
A3
Al
MP: 2,4
MP: 5,3
MP: 1,6 Q.E.D.

25
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Some proofs

Ad2.|- AoA'B, ie.: A|- AYB.
(the rule ID of the natural deduction)

Using the definition abbreviation
A'B — df -AD B,

we are to prove the theorem:
|- A> (-A > B), i.e.

the rule A, =A |- B, which has been already
proved.

26
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Some proofs

Ad 3. |- --A> A; ie.: A |- A.

Proof:
1. --A assumption
2. (HA> -a=-A)> (--A> A)  axiom A3
3. ==A> (=A>---A) theorem ad 1.
4. -A > =--AMP: 1,3
5. = =mA> A MP:4,2
6. A MP: 1,5 Q.E.D.

27
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Some proofs

Ad4.|- A> --A; i.e.: A|- --A.

Proof:

s ol e

A

(—l—l—lA =5 —|A) %) (A ) —|—|A)
—|—|—|A =) —|A

Ao A

assumption
axiom A3

theorem ad 3.
MP: 3,2 Q.E.D.

28
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? gO me pro ofs

Ad5. |- (A>B)>o (-B>-A), i.e: (A>B)|- (-B> -A).

Proof:
1. A > B assumption
2. ——A>A theorem ad 3.
By A o Tl: 2,1
4. B> B theorem ad 4.
5. A>--B Tl: 1,4
b A b 25
FoiaaA o a=BEa (5B S 2A) axiom:A3
8. -B>-A MP: 6,7 Q.E.D.

29
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Some proofs

Ad6.|- (A"B)> A, i.e.. A"B |- A.(The rule EC of the natural
deduction)

Using definition abbreviation A* B =4 (A > ~B) we are to prove
- -(A> -B)> A, i.e.: ~(A> -B) |- A
Proof:

-(A o —B) assumption

(-A > (A > -B)) o (-(A » -B) > =—=A) theorem ad 5.
-A o (A o -B) theorem ad 1.

ot L i & N Bty b MP: 3,2

= A MP: 1,4

--A > A theorem ad 3.

A MP: 5,6Q.E.D.

gt IR At b o
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Some meta-rules

Let T is any finite set of formulas: T = {A;, A,,..,A.}. Then

(a) if T,A|- B and |- A, then T|- B
It is not necessary to state theorems in the assumptions.

(b) if A|l- B, then T, A|- B. (Monotonicity of
proving)

(c) if T|I- A and T,A|- B, then T|- B

(d) if T|- A and A|- B, then T |- B.

(e) if T|- A;T|- B;A B|-C then T |- C

() if T|- A and T |- B, then T |- A”"B.
(Consequences can be composed in a conjunctive way.)

(9) T|- Ao(B>C) ifandonly if T|- B > (A2 Q).
(The order of assumptlons IS not important.)

(h) T,AYB|- C ifandonlyif both T,A|- C and T, B

- C
(Spllt the proof whenever there is a disjunction in the
sequence - meta-rule of the natural deductlon)

(i) if T,A|- B andif T,-A|- B, then T|- B



Proofs of meta-rutes (a sequence

of rules)

Ad (h) =>:LetT,A"B |- C, we provethat: T, A|- C;
T Bl C

Proof:
Al- A'B therulelID

b

sl s

,A|- A'B meta-rule (b): 1
EAB|- € assumption
[, A|l- C meta-rule (d): 2,3

, B |- C analogically to 4.

Q.E.D.
Q.E.D.

32



of rules)

Ad (h) «:LetT,A|- C, T,B |- C, we prove that T,A"B |- C.

Proof:
T T AL C
i B e e @
3. Tl- —ICD -A
deduction)
4, T, -C |- -A
DYy BT G ety o
0. T,-C|- -A”-B
7. -A*-B]|- -(A" B)
8 T, -C|- -(A"Y B)
9. T|- -C> -(A"B)
10 T~ A'B €
T T A B C

assumption
deduction Theorem:1
meta-rule (d): 2,(the rule TR of natural

deduction Theorem: 3
analogical to 4.
meta-rule (f): 4,5
de Morgan rule (prove it!)
meta-rule (d): 6,7
deduction theorem: 8
meta-rule (d): 9. (the rule TR)
deduction theorem: 10 Q.E.D.



Proofs of meta-rules(a sequence
of rules)

Ad (i): Let T,A|- B; T,-A|- B, we prove T |-
B.

Proof:
- E A B assumption
2. T, /A|- B assumption
3.T, A" -A |- B meta-rule (h): 1,2
4. T|- B meta-rule (a): 3

34
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then |-

Each logically valid formula is provable in the calculus.

The set of theorems = the set of logically valid
formulas (the red sector of the previous slide is

empty).

Sound (semantic consistent) and complete
calculus:

= A iff |-

® Provability and logical validity coincide in FOPL (1st-order
predicate logic).

Hilbert calculus is sound and complete.



e AR e AN A‘/
Properties of a calculus: deduction rules,
consistency

The set of deduction rules enables us to perform proofs
mechanically, considering just the symbols, abstracting of
their semantics. Proving in a calculus is a syntactic method.

A natural demand is a syntactic consistency of the
calculus.

A calculus is consistent iff there is a WFF ¢ such that ¢ is
not provable (in an Inconsistent calculus everything is
provable).

This definition is equivalent to the following one: a calculus is
consistent iff a formula of the form A* =A, or =(A o A), is not
provable.

A calculus is syntactically consistent iff it is sound
(semantically consistent).



Seund and Complete Calculus: |[=

Aiff |- A

Soundness (an outline of the proof has been done)

In 1928 Hilbert and Ackermann published a concise small book
Grundzuge der theoretischen Logik, in which they arrived at
exactly this point: they had defined axioms and derivation
rules of predicate logic (slightly distinct from the above), and
formulated the problem of completeness. They raised a
question whether such a proof calculus is complete in the
sense that each logical truth is provable within the calculus; in
other words, whether the calculus proves exactly all the

logically valid FOPL formulas.
Completeness Proof:

gg‘goéwger version: if T |= ¢, then T |- ¢. Kurt Godel,

A theory T is consistent iff there is a formula ¢ which is not

provable in T: not T |- ¢.

37



~_Strong Completeness of Hilbert
Calculus:

= o en | o

The proof of the Completeness theorem is based on the following
Lemma:

Each consistent theory has a model.

ifT|= ¢, thenT |- ¢ iff
if not T |- ¢, then not T |= ¢ =S

{T U -¢} does not prove ¢ as well
(¢ does not contradict T) =

{T U ~¢} is consistent, it has a modelM =
M is a model of T in which ¢ is not true =

¢ isnotentailed by : T |= ¢

38



Properties of a calculus:
Hilbert calculus is not decidable

There is another property of calculi. To illustrate it, let’'s raise a
question: having a formula ¢, does the calculus decide ¢?

In other words, is there an algorithm that would answer Yes or
No, having ¢ as input and answering the question whether ¢ is
logically valid or no? If there is such an algorithm, then the
calculus is decidable.

If the calculus is complete, then it proves all the logically valid
formulas, and the proofs can be described in an algorithmic way.

However, in case the input formula ¢ is not logically valid, the
algorithm does not have to answer (in a final number of steps).

Indeed, there are no decidable 1st order predicate logic calculi,
i.g., the problem of logical validity is not decidable in the
FOPL.

(the consequence of Godel Incompleteness Theorems)



" Provable = logically true?
Provable from ... = logically entailed
by ¢

® The relation of provability (A,,...,A, |- A) and the relation
of logical entailment (A,,...,A, |= A) are distinct relations.

OSimiIarIY, the set of theorems |- A (of a_ calculus) s
enerally not identical to the set of logically valid
ormulas |= A.

® The former is syntactic and defined within a calculus, the
latter independént of a calculus, it is semantic.

®In a sound calculus the set of theorems is a subset of the
set of logically valid formulas.

®In a sound and complete calculus the set of theorems is
identical with the set of logically valid formulas.

40



/."’///
Hilbert Calculus

WFF  FA

LVF LA

Theorems




