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Formal systems, Proof 
calculi 
A proof calculus (of a theory) is given by:

A. a language
B. a set of axioms
C. a set of deduction rules

ad A. The definition of a language of the system 
consists of:

 an alphabet (a non-empty set of symbols), and
 a grammar (defines in an inductive way a set of 

well-formed formulas - WFF) 
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Hilbert-like calculus.
Language: restricted FOPL

Alphabet: 

1. logical symbols: 
(countable set of) individual variables x, y, z, …
connectives , 
quantifiers 

2. special symbols (of arity n)
predicate symbols Pn, Qn, Rn, …
functional symbols fn, gn, hn, …
constants a, b, c,    – functional symbols of arity 0

3. auxiliary symbols (, ), [, ], …

Grammar:

1. terms
each constant and each variable is an atomic term
if t1, …, tn are terms, fn a functional symbol, then fn(t1, …, tn) is a (functional) 
term

2. atomic formulas
if t1, …, tn are terms, Pn predicate symbol, then Pn(t1, …, tn) is an atomic (well-
formed) formula

3. composed formulas
Let A, B be well-formed formulas. Then A, (AB), are well-formed formulas.
Let A be a well-formed formula, x a variable. Then xA is a well-formed formula.

4. Nothing is a WFF unless it so follows from 1.-3. 3



Hilbert calculus
Ad B. The set of axioms is a chosen subset of the set of 

WFF.

The set of axioms has to be decidable: axiom schemes:

1. A  (B  A) 
2. (A  (B  C))  ((A  B)  (A  C)) 
3. (B  A)  (A  B)
.4 x A(x)  A(x/t)     Term t substitutable for x in A 

5. x [A  B(x)]  A  x B(x),     x is not free in A 
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Hilbert calculus
Ad C. The deduction rules are of a form: 

A1,…,Am |–  B1,…,Bm 

enable us to prove theorems (provable formulas) 
of the calculus. We say that each Bi is derived 
(inferred) from the set of assumptions A1,…,Am.

Rule schemas:

MP:  A, A  B  |–  B (modus ponens)
G: A |–  x A (generalization)
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Hilbert calculus
Notes:

1. A, B are not formulas, but meta-symbols denoting any formula. 
Each axiom schema denotes an infinite class of formulas of a 
given form. If axioms were specified by concrete formulas, like 

1. p  (q  p)
2. (p  (q  r))  ((p  q)  (p  r))
3. (q  p)  (p  q)

we would have to extend the set of rules with the rule of 
substitution:
Substituting in a proved formula for each propositional logic 
symbol another formula, then the obtained formula is proved 
as well. 
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Hilbert calculus
2. The axiomatic system defined in this way works only 

with the symbols of connectives , , and quantifier . 
Other symbols of the other connectives and existential 
quantifier can be introduced as abbreviations ex 
definicione:

A  B  =df  (A  B)
A  B  =df  (A  B)
A  B =df  ((A  B)  (B  A))
xA  =df x A

The symbols , ,  and  do not belong to the 
alphabet of the language of the calculus.

3. In Hilbert calculus we do not use the indirect proof. 
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Hilbert calculus
4. Hilbert calculus defined in this way is sound (semantically 

consistent). 

a) All the axioms are logically valid formulas. 
b) The modus ponens rule is truth-preserving.

 The only problem – as you can easily see – is the generalisation 
rule. 

 This rule is obviously not truth preserving: formula P(x)  xP(x) is 
not logically valid. However, this rule is tautology preserving:

 If the formula P(x) at the left-hand side is logically valid (or 
true in an interpretation), then xA(x) is logically valid (or 
true in an interpretation) as well. 

 Since the axioms of the calculus are logically valid, the rule is correct. 

 After all, this is a common way of proving in mathematics. To prove 
that something holds for all the triangles, we prove that for any 
triangle. 8



A sound calculus: 
if |  A (provable) then |=  A (True)
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Proof in a calculus
A proof of a formula A (from logical axioms of the 

given calculus) is a sequence of formulas (proof steps) 
B1,…, Bn such that:

A = Bn (the proved formula A is the last step)

each Bi (i=1,…,n) is either 

an axiom or
 Bi is derived from the previous Bj (j=1,…,i-1) using a deduction 

rule of the calculus.

A formula A is provable by the calculus, denoted 
|–  A, if there is a proof of A in the calculus. A provable 
formula is called a theorem. 
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Hilbert calculus
 Note that any axiom is a theorem as well. Its 

proof is a trivial one step proof. 

 To make the proof more comprehensive, you 
can use in the proof sequence also 
previously proved formulas (theorems). 
 

 Therefore, we will first prove the rules of 
natural deduction, transforming thus Hilbert 
Calculus into the natural deduction system.
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A Proof from Assumptions
A (direct) proof of a formula A from assumptions 

A1,…,Am is a sequence of formulas (proof steps) B1,…Bn 
such that:

A = Bn (the proved formula A is the last step)

each Bi (i=1,…,n) is either
 

an axiom, or
an assumption Ak (1  k  m), or
Bi is derived from the previous Bj (j=1,…,i-1) using a rule of the 

calculus.

A formula A is provable from  A1, …, Am, denoted A1,
…,Am |–  A, if there is a proof of A from A1,…,Am.
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Examples of proofs (sl. 4)
Proof of a formula schema A  A:

1. (A  ((A  A)  A))  ((A  (A  A))  (A 
 A)) axiom A2: B/A  A, C/A

2. A  ((A  A)  A)axiom A1: B/A  A
3. (A  (A  A))  (A  A) MP:2,1
4. A  (A  A) axiom A1: B/A
5. A  A MP:4,3 Q.E.D.

Hence: |–  A  A . 
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Examples of proofs
Proof of: A  B, B  C |  A  C (transitivity of 

implication TI):

1. A  B assumption
2. B  C assumption
3. (A  (B  C))  ((A  B)  (A  C)) axiom A2
 
4. (B  C)  (A  (B  C)) axiom A1   A/(B 
 C), B/A
5. A  (B  C) MP:2,4
6. (A  B)  (A  C) MP:5,3
7. A  C MP:1,6   Q.E.D.

Hence: A  B, B  C |–  A  C .
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Examples of proofs
|–  Ax/t  xAx (the ND rule – existential generalisation)

Proof:

1. x Ax  Ax/t axiom A4
2. x Ax  x Ax theorem of type C  C 
 (see below)
3. x Ax  Ax/t C  D, D  E |–  C  E: 2, 1  TI
4. x Ax = xAx Intr.  acc. (by definition)
5. xAx  Ax/t substitution: 4 into 3 
6. [xAx  Ax/t]  [Ax/t  xAx] axiom A3
7. Ax/t  xAx MP: 5, 6      Q.E.D.
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Examples of proofs

A  Bx |–  A  xBx (x is not free in A)

Proof:

1. A  Bx assumption
2. x[A  Bx] Generalisation:1
3. x[A  Bx]  [A  xBx] axiom A5
4. A  xBx MP: 2,3    Q.E.D.
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The Theorem of 
Deduction
 Let A be a closed formula, B any formula. Then:

A1, A2,...,Ak |–  A  B  if and only if A1, A2,...,Ak, A |–  B.

Remark: The statement 

a) if  |–  A  B,  then  A |–  B 
is valid universally, not only for A being a closed formula (the proof 
is obvious – modus ponens). 

 On the other hand, the other statement 

b)If  A |–  B, then  |–  A  B 
is  not valid  for an open formula A (with at least one free 
variable).

 Example: Let A = A(x), B = xA(x).

Then A(x) |–  xA(x) is valid according to the generalisation rule.

But the formula Ax  xAx is generally not logically valid, and 
therefore not provable in a sound calculus. 17



The Theorem of 
Deduction
Proof (we will prove the Deduction Theorem only 

for the propositional logic):

1.  Let A1, A2,...,Ak |–  A  B. 

Then there is a sequence B1, B2,...,Bn, which is the 
proof of A  B from assumptions A1,A2,...,Ak. 

The proof of B from A1, A2,...,Ak, A is then the 
sequence of formulas B1, B2,...,Bn, A, B, where Bn 
= A  B and B is the result of applying modus 
ponens to formulas Bn and A.
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The Theorem of 
Deduction2.  Let A1, A2,...,Ak, A |–  B. 

Then there is a sequence of formulas C1,C2,...,Cr |=  B, which is the proof of B from A1,A2,...,Ak, A. 
We will prove by induction that the formula A  Ci (for all i = 1, 2,...,r) is provable from A1, A2,...,Ak. 
Then also A  Cr will be proved.

a) Base of the induction: If the length of the proof is = 1, then there are possibilities:
1. C1 is an assumption Ai, or axiom, then:
2. C1  (A  C1) axiom A1
3. A  C1 MP: 1,2 
Or, In the third case C1 = A, and we are to prove A  A (see example 1).

b) Induction step: we prove that on the assumption of A  Cn being proved for n = 1, 2, ..., i-1 the 
formula 

A  Cn can be proved also for n = i. 
For Ci there are four cases: 

1. Ci  is an assumption of Ai, 
2. Ci is an axiom, 
3. Ci is the formula A, 
4. Ci is an immediate consequence of the formulas Cj and Ck = (Cj  Ci), where j, k < i. In the first 
three cases the proof is analogical to a). In the last case the proof of the formula A  Ci is the 
sequence of formulas:

1. A  Cj  induction assumption
2. A  (Cj  Ci) induction assumption 
3. (A  (Cj  Ci))  ((A  Cj)  (A  Ci)) A2
4. (A  Cj)  (A  Ci) MP: 2,3
5.    (A  Ci) MP: 1,4 Q.E.D 19



Semantics 
A semantically correct (sound) logical calculus 

serves for proving logically valid formulas 
(tautologies). In this case the

axioms have to be logically valid formulas (true 
under all interpretations), and the 

deduction rules have to make it possible to prove 
logically valid formulas. For that reason the rules 
are either truth-preserving or tautology 
preserving, i.e.,  A1,…,Am |–  B1,…,Bm can be read 
as follows: 

 if all the formulas A1,…,Am are logically valid formulas, then 
B1,…,Bm are logically valid formulas. 
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Theorem on Soundness (semantic 
consistence)
Each provable formula in the Hilbert calculus is also 

logically valid formula: If  |–  A,  then  |=  A.

Proof (outline):

Each formula of the form of an axiom schema of 
A1 – A5 is logically valid (i.e. true in every 
interpretation structure I for any valuation v of free 
variables). 

Obviously, MP (modus ponens) is a truth preserving 
rule.

Generalisation rule: Ax |–  xAx ? 
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Generalisation rule Ax |–  xAx is tautology 
preserving: 

Let us assume that A(x) is a proof step such that in 
the sequence preceding A(x) the generalisation rule 
has not been used as yet. 

Hence |=  A(x) (since it has been obtained from 
logically valid formulas by using at most the truth 
preserving modus ponens rule). 

It means that in any structure I the formula A(x) is true 
for any valuation e of x. Which, by definition, means 
that |= xA(x) (is logically valid as well). 
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Hilbert & natural 
deduction
According to the Deduction Theorem each 

theorem of the implication form corresponds to a 
deduction rule(s), and vice versa. 

For example:

Theorem Rule(s)

|– A   ((A   B)   B) A, A   B |– B    (MP rule) 

|– A   (B   A)   ax. A1 A |– B   A;  A, B |– A 

|– A   A A |– A 
|– (A   B)   ((B   C)   (A   
C)) 

A   B |– (B   C)   (A   C); 
A   B, B   C |– A   C    /rule 
TI/ 
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Example: a few simple theorems and the 
corresponding (natural deduction) rules:

1. |– A  (A  B);   |– A  (A  B) A, A |– B 

2. |– A  A B;  |– B  A  B A |– A  B;  B |– A  B ID

3. |– A  A A |– A EN

4. |– A  A A |– A IN

5. |– (A  B)  (B  A) A  B |– B  A TR

6. |– A  B  A;  |– A  B  B A  B |– A, B EC

7. |– A  (B  A  B);  |– B  (A  A  B) A, B |– A  B IC

8. |– A  (B  C)  (A  B  C) A  (B  C) |– A  B  C 
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Some proofs
Ad 1. |–  A  (A  B);  i.e.: A, A |–  B.

Proof: (from a contradiction |–  anything)

1. A assumption
2. A assumption 
3. (B  A)  (A  B) A3
4. A  (B  A) A1
5. B  A MP: 2,4
6. A  B MP: 5,3
7. B MP: 1,6 Q.E.D. 
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Some proofs
Ad 2. |–  A  A  B,   i.e.:  A |–  A  B. 

(the rule ID of the natural deduction)

Using the definition abbreviation 
A  B  =df A  B, 

we are to prove the theorem:
|–  A  (A  B), i.e. 

the rule A, A |–  B, which has been already 
proved. 

26



Some proofs
Ad 3.  |–  A  A;  i.e.: A |–  A.

Proof:

1. A assumption 

2. (A  A)  (A  A) axiom A3
3. A  (A  A) theorem ad 1. 

4. A  AMP: 1,3
5. A  A MP: 4,2

6. A MP: 1,5  Q.E.D.

27



Some proofs
Ad 4. |–  A  A;  i.e.:  A |–  A.

Proof:

1. A assumption

2. (A  A)  (A  A) axiom A3

3. A  A theorem ad 3. 

4. A  A MP: 3,2 Q.E.D.
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Some proofs
Ad 5. |–  (A  B)  (B  A),  i.e.:  (A  B) |–  (B  A).

Proof:  

1. A  B assumption
2. A  A theorem ad 3. 
3. A  B TI: 2,1
4. B  B theorem ad 4. 
5. A  B TI: 1,4 
6. A  B TI: 2,5
7. (A  B)  (B  A) axiom A3
8. B  A MP: 6,7 Q.E.D.
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Some proofs
Ad 6. |–  (A  B)  A,  i.e.:  A  B |–  A. (The rule EC of the natural 

deduction)

Using definition abbreviation A  B =df (A  B) we are to prove

|–  (A  B)  A, i.e.: (A  B) |–  A.

Proof:

1. (A  B) assumption
2. (A  (A  B))  ((A  B)  A) theorem ad 5. 
3. A  (A  B) theorem ad 1. 
4. (A  B)  A MP: 3,2
5. A MP: 1,4
6. A  A theorem ad 3. 
7. A MP: 5,6Q.E.D.
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Some meta-rules
Let T is any finite set of formulas: T = {A1, A2,..,An}. Then

(a) if  T, A |–  B  and |–  A, then  T |–  B. 
It is not necessary to state theorems in the assumptions.

(b) if  A |–  B,  then  T, A |–  B.  (Monotonicity of 
proving)

(c) if  T |–  A  and  T, A |–  B,  then   T |–  B.
(d) if  T |–  A  and  A |–  B,  then   T |–  B.
(e) if   T |–  A; T |–  B; A, B |–  C  then  T |–  C.
(f) if  T |–  A  and  T |–  B,  then  T |–  A  B.

(Consequences can be composed in a conjunctive way.)
(g) T |–  A  (B  C)  if and only if   T |–  B  (A  C).

(The order of assumptions is not important.)
(h) T, A  B |–  C   if and only if  both  T, A |–  C  and  T, B 

|–  C.
(Split the proof whenever there is a disjunction in the 
sequence – meta-rule of the natural deduction)

(i) if  T, A |–  B  and if  T, A |–  B,  then  T |–  B. 31



Proofs of meta-rules (a sequence 
of rules)

Ad (h) : Let T, A  B |–  C, we prove that: T, A |–  C;  
T, B |–  C.

Proof:
1. A |–  A  B the rule ID
2. T, A |–  A  B meta-rule (b): 1

3. T, A  B |–  C assumption
4. T, A |–  C meta-rule (d): 2,3 Q.E.D.

5. T, B |–  C analogically to 4. Q.E.D. 
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Proofs of meta-rules (a sequence 
of rules)
Ad (h) : Let T, A |–  C;  T, B |–  C, we prove that  T, A  B |–  C. 

Proof:

1. T, A |–  C assumption
2. T |–  A  C deduction Theorem:1 
3. T |–  C  A meta-rule (d): 2,(the rule TR of natural 
deduction)

4. T, C |–  A deduction Theorem: 3
5. T, C |–  B analogical to 4.
6. T, C |–  A  B meta-rule (f): 4,5
7. A  B |–  (A  B) de Morgan rule (prove it!)
8. T, C |–  (A  B) meta-rule (d): 6,7 
9. T |–  C  (A  B) deduction theorem: 8
10. T |–  A B  C meta-rule (d): 9. (the rule TR)
11. T, A  B |–  C deduction theorem: 10 Q.E.D.
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Proofs of meta-rules (a sequence 
of rules)

Ad (i): Let  T, A |–  B;   T, A |–  B,  we prove  T |–  
B.

Proof:

1. T, A |–   B assumption

2. T, A |–  B assumption 

3. T, A  A |–  B meta-rule (h): 1,2

4. T |–  B meta-rule (a): 3 
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A Complete Calculus: if |=  A 
then |  A

Each logically valid formula is provable in the calculus.

The set of theorems = the set of logically valid 
formulas (the red sector of the previous slide is 
empty).

Sound (semantic consistent) and complete 
calculus: 

|=  A iff |  A

 Provability and logical validity coincide in FOPL (1st-order 
predicate logic).

Hilbert calculus is sound and complete.
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Properties of a calculus: deduction rules, 
consistency

 The set of deduction rules enables us to perform proofs 
mechanically, considering just the symbols, abstracting of 
their semantics. Proving in a calculus is a syntactic method. 

 A natural demand is a syntactic consistency of the 
calculus. 

 A calculus is consistent iff there is a WFF  such that  is 
not provable (in an inconsistent calculus everything is 
provable). 

 This definition is equivalent to the following one: a calculus is 
consistent iff a formula of the form A  A, or (A   A), is not 
provable. 

 A calculus is syntactically consistent iff it is sound 
(semantically consistent).
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Sound and Complete Calculus: |= 
 A iff |  A
Soundness (an outline of the proof has been done)

In 1928 Hilbert and Ackermann published a concise small book 
Grundzüge der theoretischen Logik, in which they arrived at 
exactly this point: they had defined axioms and derivation 
rules of predicate logic (slightly distinct from the above), and 
formulated the problem of completeness. They raised a 
question whether such a proof calculus is complete in the 
sense that each logical truth is provable within the calculus; in 
other words, whether the calculus proves exactly all the 
logically valid FOPL formulas. 

Completeness Proof: 

Stronger version: if T |=  , then T |–  . Kurt Gödel, 
1930

A theory T is consistent iff there is a formula  which is not 
provable in T: not T |–  . 
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Strong Completeness of Hilbert 
Calculus: 

if T |=  , then T |–  
The proof of the Completeness theorem is based on the following 

Lemma:

Each consistent theory has a model. 

if T |=  , then T |–   iff

if not T |–  , then not T |=   

{T  } does not prove  as well 
( does not contradict T)  

{T  } is consistent, it has a model M 

M is a model of T in which  is not true 

 is not entailed by T: T |=   
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Properties of a calculus: 
Hilbert calculus is not decidable

 There is another property of calculi. To illustrate it, let’s raise a 
question: having a formula , does the calculus decide ? 

 In other words, is there an algorithm that would answer Yes or 
No, having  as input and answering the question whether  is 
logically valid or no? If there is such an algorithm, then the 
calculus is decidable. 

 If the calculus is complete, then it proves all the logically valid 
formulas, and the proofs can be described in an algorithmic way. 

 However, in case the input formula  is not logically valid, the 
algorithm does not have to answer (in a final number of steps).

 Indeed, there are no decidable 1st order predicate logic calculi, 
i.e., the problem of logical validity is not decidable in the 
FOPL.

 
 (the consequence of Gödel Incompleteness Theorems) 39



Provable = logically true?
Provable from … = logically entailed 

by …?

The relation of provability (A1,...,An |–  A) and the relation 
of logical entailment (A1,...,An |=  A) are distinct relations. 

Similarly, the set of theorems |–  A (of a calculus) is 
generally not identical to the set of logically valid 
formulas |=  A. 

The former is syntactic and defined within a calculus, the 
latter independent of a calculus, it is semantic. 

In a sound calculus the set of theorems is a subset of the 
set of logically valid formulas. 

In a sound and complete calculus the set of theorems is 
identical with the set of logically valid formulas. 
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Hilbert Calculus 
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