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Formal systems, Proof 
calculi 
A proof calculus (of a theory) is given by:

A. a language
B. a set of axioms
C. a set of deduction rules

ad A. The definition of a language of the system 
consists of:

 an alphabet (a non-empty set of symbols), and
 a grammar (defines in an inductive way a set of 

well-formed formulas - WFF) 
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Hilbert-like calculus.
Language: restricted FOPL

Alphabet: 

1. logical symbols: 
(countable set of) individual variables x, y, z, …
connectives , 
quantifiers 

2. special symbols (of arity n)
predicate symbols Pn, Qn, Rn, …
functional symbols fn, gn, hn, …
constants a, b, c,    – functional symbols of arity 0

3. auxiliary symbols (, ), [, ], …

Grammar:

1. terms
each constant and each variable is an atomic term
if t1, …, tn are terms, fn a functional symbol, then fn(t1, …, tn) is a (functional) 
term

2. atomic formulas
if t1, …, tn are terms, Pn predicate symbol, then Pn(t1, …, tn) is an atomic (well-
formed) formula

3. composed formulas
Let A, B be well-formed formulas. Then A, (AB), are well-formed formulas.
Let A be a well-formed formula, x a variable. Then xA is a well-formed formula.

4. Nothing is a WFF unless it so follows from 1.-3. 3



Hilbert calculus
Ad B. The set of axioms is a chosen subset of the set of 

WFF.

The set of axioms has to be decidable: axiom schemes:

1. A  (B  A) 
2. (A  (B  C))  ((A  B)  (A  C)) 
3. (B  A)  (A  B)
.4 x A(x)  A(x/t)     Term t substitutable for x in A 

5. x [A  B(x)]  A  x B(x),     x is not free in A 
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Hilbert calculus
Ad C. The deduction rules are of a form: 

A1,…,Am |–  B1,…,Bm 

enable us to prove theorems (provable formulas) 
of the calculus. We say that each Bi is derived 
(inferred) from the set of assumptions A1,…,Am.

Rule schemas:

MP:  A, A  B  |–  B (modus ponens)
G: A |–  x A (generalization)
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Hilbert calculus
Notes:

1. A, B are not formulas, but meta-symbols denoting any formula. 
Each axiom schema denotes an infinite class of formulas of a 
given form. If axioms were specified by concrete formulas, like 

1. p  (q  p)
2. (p  (q  r))  ((p  q)  (p  r))
3. (q  p)  (p  q)

we would have to extend the set of rules with the rule of 
substitution:
Substituting in a proved formula for each propositional logic 
symbol another formula, then the obtained formula is proved 
as well. 
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Hilbert calculus
2. The axiomatic system defined in this way works only 

with the symbols of connectives , , and quantifier . 
Other symbols of the other connectives and existential 
quantifier can be introduced as abbreviations ex 
definicione:

A  B  =df  (A  B)
A  B  =df  (A  B)
A  B =df  ((A  B)  (B  A))
xA  =df x A

The symbols , ,  and  do not belong to the 
alphabet of the language of the calculus.

3. In Hilbert calculus we do not use the indirect proof. 
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Hilbert calculus
4. Hilbert calculus defined in this way is sound (semantically 

consistent). 

a) All the axioms are logically valid formulas. 
b) The modus ponens rule is truth-preserving.

 The only problem – as you can easily see – is the generalisation 
rule. 

 This rule is obviously not truth preserving: formula P(x)  xP(x) is 
not logically valid. However, this rule is tautology preserving:

 If the formula P(x) at the left-hand side is logically valid (or 
true in an interpretation), then xA(x) is logically valid (or 
true in an interpretation) as well. 

 Since the axioms of the calculus are logically valid, the rule is correct. 

 After all, this is a common way of proving in mathematics. To prove 
that something holds for all the triangles, we prove that for any 
triangle. 8



A sound calculus: 
if |  A (provable) then |=  A (True)
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Proof in a calculus
A proof of a formula A (from logical axioms of the 

given calculus) is a sequence of formulas (proof steps) 
B1,…, Bn such that:

A = Bn (the proved formula A is the last step)

each Bi (i=1,…,n) is either 

an axiom or
 Bi is derived from the previous Bj (j=1,…,i-1) using a deduction 

rule of the calculus.

A formula A is provable by the calculus, denoted 
|–  A, if there is a proof of A in the calculus. A provable 
formula is called a theorem. 
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Hilbert calculus
 Note that any axiom is a theorem as well. Its 

proof is a trivial one step proof. 

 To make the proof more comprehensive, you 
can use in the proof sequence also 
previously proved formulas (theorems). 
 

 Therefore, we will first prove the rules of 
natural deduction, transforming thus Hilbert 
Calculus into the natural deduction system.
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A Proof from Assumptions
A (direct) proof of a formula A from assumptions 

A1,…,Am is a sequence of formulas (proof steps) B1,…Bn 
such that:

A = Bn (the proved formula A is the last step)

each Bi (i=1,…,n) is either
 

an axiom, or
an assumption Ak (1  k  m), or
Bi is derived from the previous Bj (j=1,…,i-1) using a rule of the 

calculus.

A formula A is provable from  A1, …, Am, denoted A1,
…,Am |–  A, if there is a proof of A from A1,…,Am.
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Examples of proofs (sl. 4)
Proof of a formula schema A  A:

1. (A  ((A  A)  A))  ((A  (A  A))  (A 
 A)) axiom A2: B/A  A, C/A

2. A  ((A  A)  A)axiom A1: B/A  A
3. (A  (A  A))  (A  A) MP:2,1
4. A  (A  A) axiom A1: B/A
5. A  A MP:4,3 Q.E.D.

Hence: |–  A  A . 
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Examples of proofs
Proof of: A  B, B  C |  A  C (transitivity of 

implication TI):

1. A  B assumption
2. B  C assumption
3. (A  (B  C))  ((A  B)  (A  C)) axiom A2
 
4. (B  C)  (A  (B  C)) axiom A1   A/(B 
 C), B/A
5. A  (B  C) MP:2,4
6. (A  B)  (A  C) MP:5,3
7. A  C MP:1,6   Q.E.D.

Hence: A  B, B  C |–  A  C .
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Examples of proofs
|–  Ax/t  xAx (the ND rule – existential generalisation)

Proof:

1. x Ax  Ax/t axiom A4
2. x Ax  x Ax theorem of type C  C 
 (see below)
3. x Ax  Ax/t C  D, D  E |–  C  E: 2, 1  TI
4. x Ax = xAx Intr.  acc. (by definition)
5. xAx  Ax/t substitution: 4 into 3 
6. [xAx  Ax/t]  [Ax/t  xAx] axiom A3
7. Ax/t  xAx MP: 5, 6      Q.E.D.
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Examples of proofs

A  Bx |–  A  xBx (x is not free in A)

Proof:

1. A  Bx assumption
2. x[A  Bx] Generalisation:1
3. x[A  Bx]  [A  xBx] axiom A5
4. A  xBx MP: 2,3    Q.E.D.
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The Theorem of 
Deduction
 Let A be a closed formula, B any formula. Then:

A1, A2,...,Ak |–  A  B  if and only if A1, A2,...,Ak, A |–  B.

Remark: The statement 

a) if  |–  A  B,  then  A |–  B 
is valid universally, not only for A being a closed formula (the proof 
is obvious – modus ponens). 

 On the other hand, the other statement 

b)If  A |–  B, then  |–  A  B 
is  not valid  for an open formula A (with at least one free 
variable).

 Example: Let A = A(x), B = xA(x).

Then A(x) |–  xA(x) is valid according to the generalisation rule.

But the formula Ax  xAx is generally not logically valid, and 
therefore not provable in a sound calculus. 17



The Theorem of 
Deduction
Proof (we will prove the Deduction Theorem only 

for the propositional logic):

1.  Let A1, A2,...,Ak |–  A  B. 

Then there is a sequence B1, B2,...,Bn, which is the 
proof of A  B from assumptions A1,A2,...,Ak. 

The proof of B from A1, A2,...,Ak, A is then the 
sequence of formulas B1, B2,...,Bn, A, B, where Bn 
= A  B and B is the result of applying modus 
ponens to formulas Bn and A.
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The Theorem of 
Deduction2.  Let A1, A2,...,Ak, A |–  B. 

Then there is a sequence of formulas C1,C2,...,Cr |=  B, which is the proof of B from A1,A2,...,Ak, A. 
We will prove by induction that the formula A  Ci (for all i = 1, 2,...,r) is provable from A1, A2,...,Ak. 
Then also A  Cr will be proved.

a) Base of the induction: If the length of the proof is = 1, then there are possibilities:
1. C1 is an assumption Ai, or axiom, then:
2. C1  (A  C1) axiom A1
3. A  C1 MP: 1,2 
Or, In the third case C1 = A, and we are to prove A  A (see example 1).

b) Induction step: we prove that on the assumption of A  Cn being proved for n = 1, 2, ..., i-1 the 
formula 

A  Cn can be proved also for n = i. 
For Ci there are four cases: 

1. Ci  is an assumption of Ai, 
2. Ci is an axiom, 
3. Ci is the formula A, 
4. Ci is an immediate consequence of the formulas Cj and Ck = (Cj  Ci), where j, k < i. In the first 
three cases the proof is analogical to a). In the last case the proof of the formula A  Ci is the 
sequence of formulas:

1. A  Cj  induction assumption
2. A  (Cj  Ci) induction assumption 
3. (A  (Cj  Ci))  ((A  Cj)  (A  Ci)) A2
4. (A  Cj)  (A  Ci) MP: 2,3
5.    (A  Ci) MP: 1,4 Q.E.D 19



Semantics 
A semantically correct (sound) logical calculus 

serves for proving logically valid formulas 
(tautologies). In this case the

axioms have to be logically valid formulas (true 
under all interpretations), and the 

deduction rules have to make it possible to prove 
logically valid formulas. For that reason the rules 
are either truth-preserving or tautology 
preserving, i.e.,  A1,…,Am |–  B1,…,Bm can be read 
as follows: 

 if all the formulas A1,…,Am are logically valid formulas, then 
B1,…,Bm are logically valid formulas. 
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Theorem on Soundness (semantic 
consistence)
Each provable formula in the Hilbert calculus is also 

logically valid formula: If  |–  A,  then  |=  A.

Proof (outline):

Each formula of the form of an axiom schema of 
A1 – A5 is logically valid (i.e. true in every 
interpretation structure I for any valuation v of free 
variables). 

Obviously, MP (modus ponens) is a truth preserving 
rule.

Generalisation rule: Ax |–  xAx ? 
21



Generalisation rule Ax |–  xAx is tautology 
preserving: 

Let us assume that A(x) is a proof step such that in 
the sequence preceding A(x) the generalisation rule 
has not been used as yet. 

Hence |=  A(x) (since it has been obtained from 
logically valid formulas by using at most the truth 
preserving modus ponens rule). 

It means that in any structure I the formula A(x) is true 
for any valuation e of x. Which, by definition, means 
that |= xA(x) (is logically valid as well). 
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Hilbert & natural 
deduction
According to the Deduction Theorem each 

theorem of the implication form corresponds to a 
deduction rule(s), and vice versa. 

For example:

Theorem Rule(s)

|– A   ((A   B)   B) A, A   B |– B    (MP rule) 

|– A   (B   A)   ax. A1 A |– B   A;  A, B |– A 

|– A   A A |– A 
|– (A   B)   ((B   C)   (A   
C)) 

A   B |– (B   C)   (A   C); 
A   B, B   C |– A   C    /rule 
TI/ 
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Example: a few simple theorems and the 
corresponding (natural deduction) rules:

1. |– A  (A  B);   |– A  (A  B) A, A |– B 

2. |– A  A B;  |– B  A  B A |– A  B;  B |– A  B ID

3. |– A  A A |– A EN

4. |– A  A A |– A IN

5. |– (A  B)  (B  A) A  B |– B  A TR

6. |– A  B  A;  |– A  B  B A  B |– A, B EC

7. |– A  (B  A  B);  |– B  (A  A  B) A, B |– A  B IC

8. |– A  (B  C)  (A  B  C) A  (B  C) |– A  B  C 
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Some proofs
Ad 1. |–  A  (A  B);  i.e.: A, A |–  B.

Proof: (from a contradiction |–  anything)

1. A assumption
2. A assumption 
3. (B  A)  (A  B) A3
4. A  (B  A) A1
5. B  A MP: 2,4
6. A  B MP: 5,3
7. B MP: 1,6 Q.E.D. 
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Some proofs
Ad 2. |–  A  A  B,   i.e.:  A |–  A  B. 

(the rule ID of the natural deduction)

Using the definition abbreviation 
A  B  =df A  B, 

we are to prove the theorem:
|–  A  (A  B), i.e. 

the rule A, A |–  B, which has been already 
proved. 
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Some proofs
Ad 3.  |–  A  A;  i.e.: A |–  A.

Proof:

1. A assumption 

2. (A  A)  (A  A) axiom A3
3. A  (A  A) theorem ad 1. 

4. A  AMP: 1,3
5. A  A MP: 4,2

6. A MP: 1,5  Q.E.D.
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Some proofs
Ad 4. |–  A  A;  i.e.:  A |–  A.

Proof:

1. A assumption

2. (A  A)  (A  A) axiom A3

3. A  A theorem ad 3. 

4. A  A MP: 3,2 Q.E.D.
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Some proofs
Ad 5. |–  (A  B)  (B  A),  i.e.:  (A  B) |–  (B  A).

Proof:  

1. A  B assumption
2. A  A theorem ad 3. 
3. A  B TI: 2,1
4. B  B theorem ad 4. 
5. A  B TI: 1,4 
6. A  B TI: 2,5
7. (A  B)  (B  A) axiom A3
8. B  A MP: 6,7 Q.E.D.
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Some proofs
Ad 6. |–  (A  B)  A,  i.e.:  A  B |–  A. (The rule EC of the natural 

deduction)

Using definition abbreviation A  B =df (A  B) we are to prove

|–  (A  B)  A, i.e.: (A  B) |–  A.

Proof:

1. (A  B) assumption
2. (A  (A  B))  ((A  B)  A) theorem ad 5. 
3. A  (A  B) theorem ad 1. 
4. (A  B)  A MP: 3,2
5. A MP: 1,4
6. A  A theorem ad 3. 
7. A MP: 5,6Q.E.D.
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Some meta-rules
Let T is any finite set of formulas: T = {A1, A2,..,An}. Then

(a) if  T, A |–  B  and |–  A, then  T |–  B. 
It is not necessary to state theorems in the assumptions.

(b) if  A |–  B,  then  T, A |–  B.  (Monotonicity of 
proving)

(c) if  T |–  A  and  T, A |–  B,  then   T |–  B.
(d) if  T |–  A  and  A |–  B,  then   T |–  B.
(e) if   T |–  A; T |–  B; A, B |–  C  then  T |–  C.
(f) if  T |–  A  and  T |–  B,  then  T |–  A  B.

(Consequences can be composed in a conjunctive way.)
(g) T |–  A  (B  C)  if and only if   T |–  B  (A  C).

(The order of assumptions is not important.)
(h) T, A  B |–  C   if and only if  both  T, A |–  C  and  T, B 

|–  C.
(Split the proof whenever there is a disjunction in the 
sequence – meta-rule of the natural deduction)

(i) if  T, A |–  B  and if  T, A |–  B,  then  T |–  B. 31



Proofs of meta-rules (a sequence 
of rules)

Ad (h) : Let T, A  B |–  C, we prove that: T, A |–  C;  
T, B |–  C.

Proof:
1. A |–  A  B the rule ID
2. T, A |–  A  B meta-rule (b): 1

3. T, A  B |–  C assumption
4. T, A |–  C meta-rule (d): 2,3 Q.E.D.

5. T, B |–  C analogically to 4. Q.E.D. 
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Proofs of meta-rules (a sequence 
of rules)
Ad (h) : Let T, A |–  C;  T, B |–  C, we prove that  T, A  B |–  C. 

Proof:

1. T, A |–  C assumption
2. T |–  A  C deduction Theorem:1 
3. T |–  C  A meta-rule (d): 2,(the rule TR of natural 
deduction)

4. T, C |–  A deduction Theorem: 3
5. T, C |–  B analogical to 4.
6. T, C |–  A  B meta-rule (f): 4,5
7. A  B |–  (A  B) de Morgan rule (prove it!)
8. T, C |–  (A  B) meta-rule (d): 6,7 
9. T |–  C  (A  B) deduction theorem: 8
10. T |–  A B  C meta-rule (d): 9. (the rule TR)
11. T, A  B |–  C deduction theorem: 10 Q.E.D.
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Proofs of meta-rules (a sequence 
of rules)

Ad (i): Let  T, A |–  B;   T, A |–  B,  we prove  T |–  
B.

Proof:

1. T, A |–   B assumption

2. T, A |–  B assumption 

3. T, A  A |–  B meta-rule (h): 1,2

4. T |–  B meta-rule (a): 3 
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A Complete Calculus: if |=  A 
then |  A

Each logically valid formula is provable in the calculus.

The set of theorems = the set of logically valid 
formulas (the red sector of the previous slide is 
empty).

Sound (semantic consistent) and complete 
calculus: 

|=  A iff |  A

 Provability and logical validity coincide in FOPL (1st-order 
predicate logic).

Hilbert calculus is sound and complete.
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Properties of a calculus: deduction rules, 
consistency

 The set of deduction rules enables us to perform proofs 
mechanically, considering just the symbols, abstracting of 
their semantics. Proving in a calculus is a syntactic method. 

 A natural demand is a syntactic consistency of the 
calculus. 

 A calculus is consistent iff there is a WFF  such that  is 
not provable (in an inconsistent calculus everything is 
provable). 

 This definition is equivalent to the following one: a calculus is 
consistent iff a formula of the form A  A, or (A   A), is not 
provable. 

 A calculus is syntactically consistent iff it is sound 
(semantically consistent).
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Sound and Complete Calculus: |= 
 A iff |  A
Soundness (an outline of the proof has been done)

In 1928 Hilbert and Ackermann published a concise small book 
Grundzüge der theoretischen Logik, in which they arrived at 
exactly this point: they had defined axioms and derivation 
rules of predicate logic (slightly distinct from the above), and 
formulated the problem of completeness. They raised a 
question whether such a proof calculus is complete in the 
sense that each logical truth is provable within the calculus; in 
other words, whether the calculus proves exactly all the 
logically valid FOPL formulas. 

Completeness Proof: 

Stronger version: if T |=  , then T |–  . Kurt Gödel, 
1930

A theory T is consistent iff there is a formula  which is not 
provable in T: not T |–  . 
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Strong Completeness of Hilbert 
Calculus: 

if T |=  , then T |–  
The proof of the Completeness theorem is based on the following 

Lemma:

Each consistent theory has a model. 

if T |=  , then T |–   iff

if not T |–  , then not T |=   

{T  } does not prove  as well 
( does not contradict T)  

{T  } is consistent, it has a model M 

M is a model of T in which  is not true 

 is not entailed by T: T |=   
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Properties of a calculus: 
Hilbert calculus is not decidable

 There is another property of calculi. To illustrate it, let’s raise a 
question: having a formula , does the calculus decide ? 

 In other words, is there an algorithm that would answer Yes or 
No, having  as input and answering the question whether  is 
logically valid or no? If there is such an algorithm, then the 
calculus is decidable. 

 If the calculus is complete, then it proves all the logically valid 
formulas, and the proofs can be described in an algorithmic way. 

 However, in case the input formula  is not logically valid, the 
algorithm does not have to answer (in a final number of steps).

 Indeed, there are no decidable 1st order predicate logic calculi, 
i.e., the problem of logical validity is not decidable in the 
FOPL.

 
 (the consequence of Gödel Incompleteness Theorems) 39



Provable = logically true?
Provable from … = logically entailed 

by …?

The relation of provability (A1,...,An |–  A) and the relation 
of logical entailment (A1,...,An |=  A) are distinct relations. 

Similarly, the set of theorems |–  A (of a calculus) is 
generally not identical to the set of logically valid 
formulas |=  A. 

The former is syntactic and defined within a calculus, the 
latter independent of a calculus, it is semantic. 

In a sound calculus the set of theorems is a subset of the 
set of logically valid formulas. 

In a sound and complete calculus the set of theorems is 
identical with the set of logically valid formulas. 
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Hilbert Calculus 
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