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Formal systems, Proof 
calculi A proof calculus (of a theory) is given by:

1. a language
2. a set of axioms
3. a set of deduction rules

ad 1. The definition of a language of the system 
consists of:

 an alphabet (a non-empty set of symbols), and
 a grammar (defines in an inductive way a set of 

well-formed formulas - WFF) 
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Proof calculi:Example of a 

language: FOPL  Alphabet: 

1. logical symbols: 
(countable set of) individual variables x, y, z, …
connectives   , , , , 
quantifiers   , 

2. special symbols (of arity n)
predicate symbols   Pn, Qn, Rn, …
functional symbols   fn, gn, hn, …
constants a, b, c,    –   functional symbols of arity 0

3. auxiliary symbols (, ), [, ], …

Grammar:

1. terms
each constant and each variable is an atomic term
if t1, …, tn are terms, fn a functional symbol, then fn(t1, …, tn) is a (functional) term

2. atomic formulas
if t1, …, tn are terms, Pn predicate symbol, then Pn(t1, …, tn) is an atomic (well-
formed) formula

3. composed formulas
Let A, B be well-formed formulas. Then A, (AB), (AB), (AB), (AB), are well-
formed formulas.
Let A be a well-formed formula, x a variable. Then xA, xA are well-formed 
formulas.

4. Nothing is a WFF unless it so follows from 1.-3. 3



Proof calculi
Ad 2. The set of axioms is a chosen subset of the set of WFF.

 The axioms are considered to be basic (logically true) formulas 
that are not being proved. 

Example: {p  p, p  p}.

Ad 3. The deduction rules are of a form: A1,…,Am |–  B1,…,Bm 
 

Enable us to prove theorems (provable formulas) of the 
calculus. We say that each Bi is derived (inferred) from the 
set of assumptions A1,…,Am.

Examples: p  q, p |–  q (modus ponens)
p  q, q |–  p (modus tollendo tollens)
 p  q |–  p, q (conjunction elimination)

4



A proof of a formula A (from logical axioms of 
the given calculus) is a sequence of formulas 
(proof steps) B1,…, Bn such that:

A = Bn (the proved formula A is the last step)
each Bi (i = 1,…,n) is either 

 an axiom or
 Bi is derived from the previous Bj (j=1,…,i-1) using a deduction 

rule of the calculus.

A formula A is provable by the calculus, denoted 
|– A, if there is a proof of A in the calculus. 
Provable formulas are theorems (of the calculus). 
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A Proof from Assumptions
A (direct) proof of a formula A from 

assumptions A1,…,Am is a sequence of formulas 
(proof steps) B1,…,Bn such that:

A = Bn (the proved formula A is the last step)
each Bi (i=1,…,n) is either 

 an axiom, or
 an assumption Ak (1  k  m), or
 Bi is derived from the previous Bj (j=1,…,i-1) using a rule of the 

calculus.

A formula A is is provable from  A1, …, Am, 
denoted A1,…,Am |–  A, if there is a proof of A from 
A1,…,Am. 
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An indirect proof of a formula A from 
assumptions A1,…,Am is a sequence of 
formulas (proof steps) B1,…,Bn such that:

each Bi (i=1,…,n) is either 

 an axiom, or
 an assumption Ak (1  k  m), or
 an assumption A of the indirect proof (formula A that 

is to be proved is negated)
 Bi is derived from the previous Bj (j=1,…,i-1) using a rule of 

the calculus.
 Some Bk contradicts to Bl, i.e., Bk = Bl 

(k  {1,...,n}, l  {1,...,n}) 
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A sound calculus (sémanticky 
korektní): 

if |  A (provable) then |=  A 
(logically true)
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A Complete Calculus: if |=  A 
then |  A
Each logically valid formula is provable in the 

calculus.

The set of theorems = the set of logically valid 
formulas (the red sector of the previous slide is 
empty).

Sound and complete calculus: 

|=  A iff |  A
Provability and logical validity coincide in FOPL (1st-order 

predicate logic)

There are sound and complete calculi for the FOPL, 
e.g.: Hilbert-like calculi, Gentzen calculi, natural 
deduction, resolution method, …  9



Semantics 
A semantically correct (sound) logical 

calculus serves for proving logically valid 
formulas (tautologies). In this case the
axioms have to be logically valid formulas (true 

under all interpretations), and the

deduction rules make it possible to prove 
logically valid formulas. For this reason the rules 
are either truth-preserving in general or 
preserving truth in an interpretation, i.e.,  A1,
…,Am |–  B1,…,Bm can be read as follows: 

if all the formulas A1,…,Am are logically valid 
formulas, then B1,…,Bm are logically valid formulas. 
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The Theorem of 
Deduction
In a sound proof calculus the following Theorem of Deduction 

should be valid:
Theorem of deduction. A formula  is provable from 
assumptions A1,…,Am, iff the formula Am   is provable from 
A1,…,Am-1. 
In symbols: 

A1,…,Am |–    iff  A1,…,Am-1 |–  (Am  ).
In a sound calculus meeting the Deduction Theorem the 

following implication holds: 
If A1,…,Am |–    then  A1,…,Am |=  .

If the calculus is sound and complete, then provability 
coincides with logical entailment:
A1,…,Am |–    iff  A1,…,Am |=  . 
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The Theorem of 
Deduction
If the calculus is sound and complete, then provability 

coincides with logical entailment:
A1,…,Am |–   iff  A1,…,Am |=  . 

Proof. If the Theorem of Deduction holds, then  
 
A1,…,Am |–   iff  |–  (A1  (A2  …(Am  )…)). 
|–  (A1  (A2  …(Am  )…)) iff |–  (A1 … Am)  . 

 If the calculus is sound and complete, then 

|–  (A1 … Am)   iff |=  (A1 … Am)  .
|=  (A1 … Am)   iff A1,…,Am |=  .

 The first equivalence is obtained by applying the Deduction 
Theorem m-times, the second is valid due to the soundness and 
completeness, the third one is the semantic equivalence.
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Properties of a calculus: 
axioms
 The set of axioms of a calculus is non-empty and 

decidable in the set of WFFs (otherwise the calculus would 
not be reasonable, for we couldn’t perform proofs if we did 
not know which formulas are axioms). 

 It means that there is an algorithm that for any WFF  given 
as its input answers in a finite number of steps an output Yes 
or NO on the question whether  is an axiom or not. 

 A finite set is trivially decidable. The set of axioms can be 
infinite. In such a case we define the set either by an 
algorithm of creating axioms or by a finite set of axiom 
schemata.

 The set of axioms should be minimal, i.e., each axiom is 
independent of the other axioms (not provable from them).
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Properties of a calculus: deduction rules, 
consistency

 The set of deduction rules enables us to perform 
proofs mechanically, considering just the symbols, 
abstracting of their semantics. Proving in a calculus is a 
syntactic method. 

 A natural demand is a syntactic consistency of the 
calculus. 

 A calculus is consistent iff there is a WFF  such that 
 is not provable (in an inconsistent calculus everything 
is provable). 

 This definition is equivalent to the following one: a 
calculus is consistent iff a formula of the form A  A, or 
(A  A), is not provable. 

 A calculus is syntactically consistent iff it is 
sound (semantically consistent). 14



Properties of a calculus: 
(un)decidability
 There is another desirable property of calculi. To illustrate it, let’s 

raise a question: having a formula , does the calculus decide ?

 In other words, is there an algorithm that would answer in a 
finite number of steps Yes or No, having  as input and 
answering the question whether  is logically valid or no? If there 
is such an algorithm, then the calculus is decidable. 

 If the calculus is complete, then it proves all the logically valid 
formulas, and the proofs can be described in an algorithmic way. 

 However, in case the input formula  is not logically valid, the 
algorithm does not have to answer (in a finite number of steps).

 Indeed, there is no decidable 1st order predicate logic 
calculus, i.e., the problem of logical validity is not 
decidable in the FOPL. 

 (the consequence of Gödel Incompleteness Theorems)
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Provable = logically true?
Provable from … = logically entailed by …?

The relation of provability (A1,...,An |–  A) and the 
relation of logical entailment (A1,...,An |=  A) are 
distinct relations. 

Similarly, the set of theorems |–  A (of a calculus) is 
generally not identical to the set of logically valid 
formulas |=  A. 

The former is syntactic and defined within a calculus, 
the latter is independent of a calculus, it is semantic.

 
In a sound calculus the set of theorems is a subset of 

the set of logically valid formulas. 

In a sound and complete calculus the set of theorems 
is identical with the set of formulas. 16



„pre-Hilbert“ formalists
 „Mathematics is a game with symbols“

 A simple system S:
Constants: ,
Predicates:  
Axioms of S: (1)  x (x  x)
(2) x x  
(3) 
Inference rules: MP (modus ponens), E (general quantifier elimination), 
I 

      (existential quantifier insertion)

Theorem:   
Proof:  (axiom 3)

x x(I)
 (axiom 2 and MP)
   (axiom 1 and E)
 (MP) 

It is impossible to develop mathematics in such a purely formalist 
way. Instead: use only finitist methods (Gödel: impossible as well) 

17



Historical background
 The reason why proof calculi have been developed can be traced back 

to the end of 19th century. At that time formalization methods had 
been developed and various paradoxes arose. All those paradoxes 
arose from the assumption on the existence of actual infinities. 

 To avoid paradoxes, David Hilbert (a significant German 
mathematician) proclaimed the program of formalisation of 
mathematics. The idea was simple: to avoid paradoxes we will use 
only finitist methods: 

 First:
 start with a decidable set of certainly (logically) true formulas, 
 use truth-preserving rules of deduction, and 
 infer all the logical truths. 

 Second, 
 begin with some sentences true in an area of interest (interpretation), 
 use truth-preserving rules of deduction, and 
 infer all the truths of this area. 

 In particular, he intended to axiomatise in this way mathematics, in 
order to avoid paradoxes.  18



Historical background
Hilbert supposed that these goals can be met.  

Kurt Gödel (the greatest logician of the 20th century) proved the 
completeness of the 1st order predicate calculus, which was 
expected. He even proved the strong completeness: 

if SA |=  T then SA |–  T (SA – a set of assumptions).
 

But Hilbert wanted more: he supposed that all the truths of 
mathematics can be proved in this mechanic finite way. That is, 
that a theory of arithmetic (e.g. Peano) is complete in the 
following sense: 

 each formula is in the theory decidable, i.e., the theory proves either 
the formula or its negation, which means that all the formulas true in 
the intended interpretation over the set of natural numbers are provable 
in the theory:  

Gödel’s theorems on incompleteness give a surprising result: 
there are true but not provable sentences of natural 
numbers arithmetic. Hence Hilbert program is not fully realisable. 
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Natural Deduction 
CalculusAxioms: A  A, A  A

Deduction Rules:
conjunction: A, B |–  A  B  (IC)

A  B |–  A, B    (EC)
disjunction: A |–  A  B or  B |–  A  B (ID)

A  B,A |–  B  or  A  B,B |–  A (ED)
Implication: B |–  A  B (II)

A  B, A |–  B      (EI, modus ponens MP)
equivalence: A  B, B  A |–  A  B (IE)

A  B |–  A  B, B  A (EE)
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Natural Deduction 
CalculusDeduction rules for quantifiers
General quantifier:     Ax |–  xAx I

The rule can be used only if formula Ax is not derived from 
any assumption that would contain variable x as free.
xAx |–  Ax/t E
Formula Ax/t is a result of correctly substituting the term t 
for the variable x (no collision of variables). 

Existential quantifier Ax/t |–  xAx I
xAx |–  Ax/c E
where c is a constant not used in the language as yet. If 
the rule is used for distinct formulas, then a different 
constant has to be used. A more general form of the rule is:

y1...yn x Ax, y1,...,yn |–  y1...yn Ax / f(y1,...,yn), 
y1,...,yn  General E
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Natural Deduction 
(notes)
1. In the natural deduction calculus an indirect proof is often 

used.

2. Existential quantifier elimination has to be done in accordance 
with the rules of Skolemisation in the general resolution 
method.

3. Rules derivable from the above:

 Ax  B      |–  xAx  B, x is not free in B
 A  Bx      |  –  A  xBx, x is not free in A
 Ax  B      |–  xAx  B, x is not free in B
 A  Bx      |–  A  xBx
 A  xBx |–  A  Bx 
 xAx  B  |–  Ax  B
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Natural Deduction
Another useful rules and theorems of propositional logic (try to prove 

them): 

Introduction of negation: A |–  A IN
Elimination of  negation: A |–  A EN
Negation of  disjunction: A  B |–  A  B ND
Negation of conjunction: A  B |–  A  B NK
Negation of  implication: A  B |–  A  B NI
Tranzitivity of  implication: A  B, B  C |–  A  C TI
Transpozition: A  B |–  B  A TR
Modus tollens: A  B, B |–  A MT
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Natural Deduction: 
Examples
Theorem 1: 

A  B, B |–  A    Modus Tollens

Proof:

1. A  B assumption
.2 B assumption

3. A assumption of the indirect proof
4. B MP: 1, 3 contradicts to 2., hence
5. A Q.E.D 
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Natural Deduction: 
Examples

Theorem 2: 
C  D |–  C  D

Proof:

1.   C  D assumption
2.   (C  D) assumption of indirect proof
3.   (C  D)  (C  D) de Morgan (see the next 
example)
4.   C  D MP 2,3
5.   C EC 4
6.   D EC 4
7.   D MP 1, 5 contradicts to 6, hence
8.   C  D (assumption of indirect proof is not true)Q.E.D. 
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Proof of an implicative 
formula
 If a formula F is of an implicative form:

A1  {A2  [A3  …  (An  B) …]} (*)

 then according to the Theorem of Deduction 
the formula F can be proved in such a way 
that the formula B is proved from the 
assumptions A1, A2, A3, …, An. 
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The technique of branch 
proof

from hypotheses
 Let the proof sequence contain a disjunction: 

D1  D2  …  Dk 

 We introduce hypotheses Di (1 ≤ i ≤ k). If a 
formula F can be proved from each of the 
hypotheses Di, then F is proved. 

 Proof (of the validity of branch proof):

a) Theorem 4: [(p  r)  (q  r)]  [(p  q)  r] 

b) The rule II (implication introduction): B |– A  B
27



The technique of branch 
proof

from hypotheses
Theorem 4: 

[(p  r)  (q  r)]  [(p  q)  r]

1. [(p  r)  (q  r)] assumption
2. (p  r) EK: 1
3. (q  r) EK: 1
4. p  q assumption 
5. (p  r)  (p  r) Theorem 2
6. p  r MP: 2.5.
7. r assumption of the indirect proof
8. p ED: 6.7.
9. q ED: 4.8.
10. r MP: 3.9. – contra 7., hence
11. r Q.E.D 
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The technique of branch 
proof

from hypotheses
Theorem 3: 

(A  B)  (A  B) de Morgan law

Proof:

1. (A  B) assumption
2. A  B assumption of the indirect proof
3. A EC 1.
4. B EC 1.

5.1. A hypothesis: contradicts to 3
5.2. B hypothesis: contradicts to 4. 

5. A  (A  B) II
6. B  (A  B) II
7. [A  (A  B)]  [B  (A  B)] IC 5,6
8. (A  B)  (A  B) Theorem 4
9. (A  B) MP 2, 8: Q.E.D. 
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Natural Deduction: 
examples
Theorem 5: 

A  C, B  C |–  (A  B)  C
Proof:

1. A  C assumption
2. A  C Theorem 2
3. B  C assumption
4. B  C Theorem 2
5. A  B assumption
6. C assumption of indirect proof
7. B ED 4, 6
8. A ED 2, 6
9. A  BIC 7, 8
10. (A  B)  (A  B) Theorem 3 (de Morgan)
11. (A  B) MP 9, 10 contradicts to 5., hence
12. C (assumption of indirect proof is not true) Q.E.D.
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Natural Deduction: 
examples
Some proofs of FOPL theorems

1) |–  x [Ax  Bx]  [xAx  xBx]

Proof: 

1. x [Ax  Bx] assumption  
2. x Ax assumption 
3. Ax  Bx E:1
4. Ax E:2
5. Bx MP:3,4
6. xBx I:5

Q.E.D.
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Natural Deduction: 
examples
 According to the Deduction Theorem we 

prove theorems in the form of implication 
by means of the proof of consequent from 
antecedent:

 x [Ax  Bx] |–  [xAx  xBx] iff

 x [Ax  Bx], xAx |–  xBx
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Natural Deduction: 
examples
2)|–  x Ax  x Ax (De Morgan rule)

Proof:
 

: 1. x Ax assumption  
 2. x Ax assumption of indirect proof
3.1. Ax hypothesis
3.2. x Ax I: 3.1
4. Ax  x Ax II: 3.1, 3.2
5. Ax MT: 4,2
6. x Ax Z:5 contradicts to:1 Q.E.D.
: 1. x Ax assumption
2. x Axassumption of indirect proof
3. Ac) E:1
4. Ac E:2
contradicts to:3 Q.E.D. 
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Natural Deduction: 
examples
Note: In the proof sequence we can introduce a 

hypothetical assumption H (in this case 3.1.) and 
derive conclusion C from this hypothetical 
assumption H (in this case 3.2.). As a regular proof 
step we then must introduce implication H  C (step 
4.).

According to the Theorem of Deduction this theorem 
corresponds to two rules of deduction: 

 x Ax |–  x Ax   

 x Ax |–  x Ax  
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Natural Deduction: 
examples3) |–  x Ax   x Ax (De Morgan rule)

Proof: 

: 1. x Ax assumption 
 2.1. Ax hypothesis
2.2. x AxZ:2.1
3. Ax  x Ax ZI: 2.1, 2.2
4. Ax MT: 3,1
5. x Ax Z:4 Q.E.D.
: 1. x Ax assumption
2. x Axassumption of indirect proof
3. Ac) E: 2
4. Ac E: 1 contradictss to: 3
 Q.E.D.

 According to the Theorem of Deduction this theorem (3) 
corresponds to two rules of deduction:

x Ax |– x Ax, x Ax |–  x Ax
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Existential quantifier 
elimination
Note: In the second part of the proofs ad (2) and (3) 

the rule of existential quantifier elimination (E) 
has been used. 

This rule is not truth preserving: the formula x 
A(x)  A(c) is not logically valid (cf. Skolem 
rule in the resolution method: the rule is 
satifiability preserving). 

There are two ways of its using correctly:
In an indirect proof (satisfiability!)
As a an intermediate step that is followed by Introducing 

 again 

The proofs ad (2) and (3) are examples of the 
former (indirect proofs). The following proof is an 
example of the latter:

36



Natural Deduction
4) |–  x [Ax  Bx]  [ x Ax  x Bx]

Proof: 

1. x [Ax  Bx] assumption
2. xAxassumption 
3. Aa E: 2
4. Aa  Ba E: 1
5. Ba MP: 3,4 
6. xBx I: 5
Q.E.D. 

Note: this is another example of a correct using the rule E. 
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Natural Deduction
5)|–  x [A  Bx]  A  xBx, where A does not contain variable x 

free

Proof:
 

: 1. x [A  Bx] assumption
 2. A  Bx E: 1  
3. A  A axiom
3.1. A 1. hypothesis
3.2. A  xBx ZD: 3.1
4.1. A 2. hypothesis
4.2. Bx ED: 2, 4.1
4.3. xBx I: 4.2
4.4. A  xBx ID: 4.3.
5. [A  (A  xBx)]  [A  (A  xBx)] II + IC
6. (A  A)  (A  xBx) theorem + MP 5
7. A  xBx MP 6, 3 
Q.E.D.
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5)|– x [A  Bx]  A  xBx, where A does not contain variable 

x free

Proof:
 
:1. A  xBx Assumption, disjunction of hypotheses

2.1. A 1. hypothesis
2.2. A  BxID: 2.1
2.3. x [A  Bx] I: 2.2
3. A  x [A  Bx] 
4.1. xBx 2. hypothesis
4.2. Bx E: 3.1
4.3. A  BxID: 3.2
4.4. x [A  Bx] I: 3.3
5. xBx  x [A  Bx] II 4.1., 4.4.
6. [A  xBx]  x [A  Bx] Theorem, IC, MP – 3, 5
7. x [A  Bx] MP 1, 6Q.E.D.
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6) |–  A(x)  B  xA(x)  B

Proof: 

1. A(x)  B assumption
2. xA(x) assumption 
3. A(x) E: 2
5. B MP: 1,2

Q.E.D.

This theorem corresponds to the rule:

A(x)  B |–  xA(x)  B
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