

INVESTMENTS IN EDUCATION DEVELOPMENT

1 Tableaux in predicate logic

Exercise 1.1: Prove that the following formulas are tautologies. Use tableau method.

- a) $\Phi_1 \equiv \forall x \varphi(x) \Rightarrow \neg(\exists x \neg \varphi(x))$
- b) $\Phi_2 \equiv \forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall x P(x) \Rightarrow \forall x Q(x))$
- c) $\Phi_3 \equiv \forall x (\varphi(x) \land \psi(x)) \Leftrightarrow (\forall x \varphi(x) \land \forall x \psi(x))$
- d) $\Phi_4 \equiv \exists y \forall x (P(x,y) \Leftrightarrow P(x,x)) \Rightarrow \neg \forall x \exists y \forall z (P(z,y) \Leftrightarrow \neg P(z,x))$

Solution 1.1: A finished tableau in predicate logic is constructed analogously as in propositional logic.

Additionally, a node of the form $T\exists x\varphi(x)$ (or $F\forall x\varphi(x)$) is reduced by adjoining $T\varphi(c)$ (or $F\varphi(c)$) to the end of every noncontradictory path involved. The letter c represents a new constant that does not appear in any node on the expanded paths.

When nodes of the form $T \forall x \varphi(x)$ (or $F \exists x \varphi(x)$) are reduced, they should always be copied to the end of every noncontradictory path involved and are followed by $T\varphi(t)$ (or $F\varphi(t)$). The letter t represents any ground term (term without variables). (The term is almost always constructed from function and constant symbols that occur on the particular paths.)

Finished tableaux for formulas Φ_1 (left) and Φ_2 (right):

Finished tableau for the formula Φ_3 :

The last formula: analogically.

Exercise 1.2: Prove that the formula $\forall x P(x)$ is a logical consequence of the following formulas:

$$\forall x ((Q(x) \lor R(x)) \Rightarrow \neg S(x))$$

$$\forall x ((R(x) \Rightarrow \neg P(x)) \Rightarrow (Q(x) \land S(x)))$$

Solution 1.2: Tableau proofs of logical consequences in predicate logic are done in the same way as in propositional logic.

Exercise 1.3: Prove the following logical consequence using the tableau method. Assume that the following three statements hold:

- There exists a dragon (denote it D/1).
- Dragons sleep (S/1) or hunt (L/1).
- $\bullet\,$ If a drag on is hungry (H/1), it cannot sleep.

Conclusion: If a dragon is hungry, it hunts.

Solution 1.3: Transformation into formulas:

Premises: $\exists x D(x)$

 $\forall x (D(x) \Rightarrow (S(x) \lor L(x)))$

 $\forall x ((D(x) \land H(x)) \Rightarrow \neg S(x))$

Conclusion: $\forall x ((D(x) \land H(x)) \Rightarrow L(x))$

Finished tableau for the logical consequence:

