TA008 Computational logic Prolog and inference

L
* X x .
* L]
L
e §
european * . il H

social fund |n_the MINISTRY OF EDUCATION, OP Education
% 4 czech republic ~ EUROPEAN UNION YOUTH AND SPORTS for Competitiveness

INVESTMENTS IN EDUCATION DEVELOPMENT

* %
*

1 Box model

Exercise 1.1: Let’s have the following program and queries. Demonstrate the
processing of the queries using the box model representation.

member (X, [X]|_]).
member (X, [_|T]) :- member(X,T).

7- member (a, [b]) .
?- member(a, [b,a]).
?- member(a, [a,b]), fail.

Solution 1.1: Simplified (not nested) demonstration of the processing of the
query

?- member(a, [a,b]), fail.

1 4 | 5 |
?-member(a,[a,b]), fail. ?-member(a,[b]), fail. ?-member(a,[]), fail.
- -f S
8 7 6
3 2
?- fail.

In addition to this drawings it is possible to look at the ports of boxes directly
using tracing tools in Prolog. For example:

?- trace.
?- member(a, [b,a]).
1 1 Call: member(a,[b,a]) ?
2 2 Call: member(a,[a]) ?
2 2 Exit: member(a,[a]) ?
1 1 Exit: member(a,[b,a]) 7
yes

2 DMetainterpreters, backward and forward chain-
ing

Exercise 2.1: Write a metainterpreter for backward chaining

TA008 Computational logic Prolog and inference

e for Prolog clauses with conjunction and disjunction

e for rules in a form rule(LefthandSide, RighthandSide) where LefthandSide
is a list of Prolog predicates (a comma means conjunction) and Righthand-
Side is a predicate.

Solution 2.1:

e prove(true).
prove((A;B)) :- prove(A) ; prove(B).
prove((A,B)) :- prove(A), prove(B).
prove(H) :- clause(H,B), prove(B).

e prove([]).
prove([H|T]) :- prove(H), prove(T).
prove(RHS) :- rule(LHS,RHS), prove(LHS).

Exercise 2.2: Write a forward chaining interpreter for rules in a form rule(LHS,
RHS).

Solution 2.2:

fc(K1,K3) :- step(K1,K2), fc(¥K2,K3).
fc(K1,K1).

step(K1,K2) :-
rule(L,R),
true_in(L,K1),
not true_in(R,K1),
append (K1, [R] ,K2) .

true_in([],_).

true_in([HIT],K) :-
true_in(H,K),
true_in(T,K).

true_in(X,K) :- member(X,K).

Exercise 2.3: Rewrite the Prolog rules below into the form for the forward
chaining interpreter and simulate its behaviour for these two facts: d. e.

:—d, e, b.
- c, e.

- a, c.
- d.

0O o TP

TA008 Computational logic Prolog and inference

Solution 2.3:

rule([d,e,b]l,a).
rule([c,el,b).
rule([a,c],b).
rule([d],c).

?7- fc([d,e],X).

3 SAT: Davis Putnam (DP), DPLL

Exercise 3.1: Is the following set of clauses satisfiable? (Use DP algorithm
to find the solution).

S = {{P> Q, R}? {P7 —Q, _‘R}7 {P> _‘W}v {ﬁQa -R, ﬁW}? {_'P7 —Q, R}>
{U7 X}v {Uv ﬁ)(}v {Q, ﬁU}v {ﬁR’ ﬁU}}

Solution 3.1: DP Algorithm (one of the possibilities):
e input: a formula in CNF without tautologies (set representation)
e repeat while there are any variables and O is not in the set of clauses:

— choose a variable

— create all the resolvents using clauses that contain the chosen vari-
able, add the non-tautologic resolvents into the set of clauses

— discard all the clauses containing the chosen variable
e output:

— SAT when the set of clauses is empty (NO CLAUSES),
— UNSAT when there is O in the set (EMPTY CLAUSE)

a) chosen variable: W
clauses containing: {P,-W},{-Q,-R,-W}
resolvents: no

new set: {{P7 Q, R}’ {Pv —Q, _‘R}7 {_‘P7 —Q, R}a {U’ X}7 {U’ _‘X}7 {Qv _‘U}, {_‘R7 _‘U}}

b) chosen variable: X
clauses containing: {U, X},{U,-~X}
resolvents: {U}
new set: {{P,Q, R},{P,~Q,-R},{-P,—-Q,R},{U},{Q,-U},{-R,-U}}

c¢) chosen variable: U
clauses containing: {U},{Q,-U}, {—-R,-U}
resolvents: {Q}, {—R}
new set: {{P7 Q, R}’ {P’ —Q, _‘R}7 {_‘Pa —Q, R}’ {Q}’ {_‘R}}

TA008 Computational logic Prolog and inference

d) chosen variable: @
clauses containing: {P,Q, R}, {P,-Q,~R},{-P,-Q, R},{Q}
resolvents: {-P, R},{P,~R},{P, R,~R},{P,-P, R}
tautologies: {P, R,—R},{P,—-P, R}
new set: {{—R},{-P, R},{P,—R}}

e) chosen variable: P
clauses containing: {-P, R}, {P, R}
resolvents: {R, R}
tautologies: {R, R}
new set: {{-R}}

f) chosen variable: R
clauses containing: {—~R}
resolvents: no
new set: empty (NO CLAUSES)

Conclusion: SAT (the set S is satisfiable).

Exercise 3.2: Is the following set of clauses satisfiable? (Use DPLL algorithm
to find the solution).

S = {{Pa =@, _‘R}v {Rv_‘Q}7 {_‘Pa _‘Q}v {Pv _‘R}7 {P7 R}7 {R}a {Q7_'P7Q}}

Solution 3.2: DPLL Algorithm: until SAT or UNSAT can be used, apply the
rest of the following rules to S:

e UNSAT: O is an element of S

e SAT: S is empty

e MULT: eliminate duplicate literals within one clause

e SUBS: discard a clause that is a superset of another clause

e UNIT: discard the literal =L in all clauses when S contains the clause {L}
e TAUT: discard a clause that is a tautology (contains both L and —L)

e PURE: discard all clauses containing L when there is no occurrence of =L

inS

e SPLIT: discard all clauses containing either L or —L and add all their
possible resolvents

a

)
b) {{P7 -Q, _'R}a {Ra _‘Q}v {_'Pv _'Q}a {Pv _‘R}v {Pv R}a {R}v {_'P’ Q}} SUBS
C) {{P7 —=Q, _'R}a {Ra _‘Q}v {_'Pv _'Q}a {Pv _‘R}a {R}v {_'P7 Q}} UNIT R
d) {P.-Q}{R,~Q}. {~P.-Q}, {P},{R},{-P,Q}} PURE R

)

¢) {{P,-Q},{~P,-Q},{P},{~P,Q}} UNIT P

{{P7 -Q, _'R}a {Ra _‘Q}v {_'P7 _'Q}a {Pa _‘R}v {Pa R}a {R}v {Qv —P, Q}} MULT

TA008 Computational logic

Prolog and inference

f) {{P _‘Q}a{ﬁQ}’{P}v{Q}} PURE P

g) {{-Q},{Q}} SPLIT Q
h) {0} UNSAT

Conclusion: UNSAT (the set S is unsatisfiable).

