
IA008 Computational logic Prolog and inference

1 Box model

Exercise 1.1: Let’s have the following program and queries. Demonstrate the
processing of the queries using the box model representation.

member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

?- member(a,[b]).
?- member(a,[b,a]).
?- member(a,[a,b]), fail.

Solution 1.1: Simplified (not nested) demonstration of the processing of the
query

?- member(a,[a,b]), fail.

?-member(a,[b]), fail.?-member(a,[a,b]), fail. ?-member(a,[]), fail.

?- fail.

1

23

4 5

678

In addition to this drawings it is possible to look at the ports of boxes directly
using tracing tools in Prolog. For example:

?- trace.
?- member(a,[b,a]).

1 1 Call: member(a,[b,a]) ?
2 2 Call: member(a,[a]) ?
2 2 Exit: member(a,[a]) ?
1 1 Exit: member(a,[b,a]) ?

yes

2 Metainterpreters, backward and forward chain-
ing

Exercise 2.1: Write a metainterpreter for backward chaining

1



IA008 Computational logic Prolog and inference

• for Prolog clauses with conjunction and disjunction

• for rules in a form rule(LefthandSide, RighthandSide) where LefthandSide
is a list of Prolog predicates (a comma means conjunction) and Righthand-
Side is a predicate.

Solution 2.1:

• prove(true).
prove((A;B)) :- prove(A) ; prove(B).
prove((A,B)) :- prove(A), prove(B).
prove(H) :- clause(H,B), prove(B).

• prove([]).
prove([H|T]) :- prove(H), prove(T).
prove(RHS) :- rule(LHS,RHS), prove(LHS).

Exercise 2.2: Write a forward chaining interpreter for rules in a form rule(LHS,
RHS).

Solution 2.2:

fc(K1,K3) :- step(K1,K2), fc(K2,K3).
fc(K1,K1).

step(K1,K2) :-
rule(L,R),
true_in(L,K1),
not true_in(R,K1),
append(K1,[R],K2).

true_in([],_).
true_in([H|T],K) :-
true_in(H,K),
true_in(T,K).

true_in(X,K) :- member(X,K).

Exercise 2.3: Rewrite the Prolog rules below into the form for the forward
chaining interpreter and simulate its behaviour for these two facts: d. e.

a :- d, e, b.
b :- c, e.
b :- a, c.
c :- d.

2



IA008 Computational logic Prolog and inference

Solution 2.3:

rule([d,e,b],a).
rule([c,e],b).
rule([a,c],b).
rule([d],c).

?- fc([d,e],X).

3 SAT: Davis Putnam (DP), DPLL

Exercise 3.1: Is the following set of clauses satisfiable? (Use DP algorithm
to find the solution).

S = {{P,Q, R}, {P,¬Q,¬R}, {P,¬W}, {¬Q,¬R,¬W}, {¬P,¬Q, R},
{U, X}, {U,¬X}, {Q,¬U}, {¬R,¬U}}

Solution 3.1: DP Algorithm (one of the possibilities):

• input: a formula in CNF without tautologies (set representation)

• repeat while there are any variables and 2 is not in the set of clauses:

– choose a variable

– create all the resolvents using clauses that contain the chosen vari-
able, add the non-tautologic resolvents into the set of clauses

– discard all the clauses containing the chosen variable

• output:

– SAT when the set of clauses is empty (NO CLAUSES),

– UNSAT when there is 2 in the set (EMPTY CLAUSE)

a) chosen variable: W
clauses containing: {P,¬W}, {¬Q,¬R,¬W}
resolvents: no
new set: {{P,Q, R}, {P,¬Q,¬R}, {¬P,¬Q, R}, {U,X}, {U,¬X}, {Q,¬U}, {¬R,¬U}}

b) chosen variable: X
clauses containing: {U, X}, {U,¬X}
resolvents: {U}
new set: {{P,Q, R}, {P,¬Q,¬R}, {¬P,¬Q, R}, {U}, {Q,¬U}, {¬R,¬U}}

c) chosen variable: U
clauses containing: {U}, {Q,¬U}, {¬R,¬U}
resolvents: {Q}, {¬R}
new set: {{P,Q, R}, {P,¬Q,¬R}, {¬P,¬Q, R}, {Q}, {¬R}}

3



IA008 Computational logic Prolog and inference

d) chosen variable: Q
clauses containing: {P,Q, R}, {P,¬Q,¬R}, {¬P,¬Q, R}, {Q}
resolvents: {¬P,R}, {P,¬R}, {P,R,¬R}, {P,¬P,R}
tautologies: {P,R,¬R}, {P,¬P,R}
new set: {{¬R}, {¬P,R}, {P,¬R}}

e) chosen variable: P
clauses containing: {¬P,R}, {P,¬R}
resolvents: {R,¬R}
tautologies: {R,¬R}
new set: {{¬R}}

f) chosen variable: R
clauses containing: {¬R}
resolvents: no
new set: empty (NO CLAUSES)

Conclusion: SAT (the set S is satisfiable).

Exercise 3.2: Is the following set of clauses satisfiable? (Use DPLL algorithm
to find the solution).

S = {{P,¬Q,¬R}, {R,¬Q}, {¬P,¬Q}, {P,¬R}, {P,R}, {R}, {Q,¬P,Q}}

Solution 3.2: DPLL Algorithm: until SAT or UNSAT can be used, apply the
rest of the following rules to S:

• UNSAT: 2 is an element of S

• SAT: S is empty

• MULT: eliminate duplicate literals within one clause

• SUBS: discard a clause that is a superset of another clause

• UNIT: discard the literal ¬L in all clauses when S contains the clause {L}

• TAUT: discard a clause that is a tautology (contains both L and ¬L)

• PURE: discard all clauses containing L when there is no occurrence of ¬L
in S

• SPLIT: discard all clauses containing either L or ¬L and add all their
possible resolvents

a) {{P,¬Q,¬R}, {R,¬Q}, {¬P,¬Q}, {P,¬R}, {P,R}, {R}, {Q,¬P,Q}}MULT

b) {{P,¬Q,¬R}, {R,¬Q}, {¬P,¬Q}, {P,¬R}, {P,R}, {R}, {¬P,Q}} SUBS

c) {{P,¬Q,¬R}, {R,¬Q}, {¬P,¬Q}, {P,¬R}, {R}, {¬P,Q}} UNIT R

d) {{P,¬Q}, {R,¬Q}, {¬P,¬Q}, {P}, {R}, {¬P,Q}} PURE R

e) {{P,¬Q}, {¬P ,¬Q}, {P}, {¬P , Q}} UNIT P

4



IA008 Computational logic Prolog and inference

f) {{P,¬Q}, {¬Q}, {P}, {Q}} PURE P

g) {{¬Q}, {Q}} SPLIT Q

h) {2} UNSAT

Conclusion: UNSAT (the set S is unsatisfiable).

5


