

1 Lukasiewicz three-valued logic (L_3)

Exercise 1.1: Write a function that expresses the valuation (truth value) of the formula $p \Leftrightarrow q$ in L₃. Write also the truth table for equivalence in L₃. We still suppose that equivalence is a shortcut for $(p \Rightarrow q) \land (q \Rightarrow p)$.

Solution 1.1:

 $v(p \Leftrightarrow q) = \min\{\min\{1, 1 - v(p) + v(q)\}, \min\{1, 1 - v(q) + v(p)\}\}$ or $v(p \Leftrightarrow q) = 1 - abs(v(p) - v(q))$

⇔	1	0.5	0
1	1	0.5	0
0.5	0.5	1	0.5
0	0	0.5	1

Exercise 1.2: Find out whether the following formulas are tautologies of L_3 . Use truth tables.

- a) $p \Leftrightarrow \neg \neg p$
- b) $p \Rightarrow p$
- c) $p \lor \neg p$
- d) $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$
- e) $p \Rightarrow (q \Rightarrow p)$

Solution 1.2:

a) Formula is a tautology of L_3 .

p	$\neg p$	$\neg \neg p$	$p \Leftrightarrow \neg \neg p$
1	0	1	1
0.5	0.5	0.5	1
0	1	0	1

b) Formula is a tautology of L_3 .

p	$p \Rightarrow p$
1	1
0.5	1
0	1

c) Formula is not a tautology of L_3 .

p	$\neg p$	$p \vee \neg p$
1	0	1
0.5	0.5	0.5
0	1	1

d) Formula is not a tautology of L_3 .

p	q	$\neg p$	$p \Rightarrow q$	$\neg p \lor q$	$(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$
1	1	0	1	1	1
1	0.5	0	0.5	0.5	1
1	0	0	0	0	1
0.5	1	0.5	1	1	1
0.5	0.5	0.5	1	0.5	0.5
0.5	0	0.5	0.5	0.5	1
0	1	1	1	1	1
0	0.5	1	1	1	1
0	0	1	1	1	1

e) Formula is a tautology of L_3 .

p	q	$q \Rightarrow p$	$p \Rightarrow (q \Rightarrow p)$
1	1	1	1
1	0.5	1	1
1	0	1	1
0.5	1	0.5	1
0.5	0.5	1	1
0.5	0	1	1
0	1	0	1
0	0.5	0.5	1
0	0	1	1

Exercise 1.3: How many rows (without headings) has a truth table for a formula with 3 (or n) mutually distinct truth variables?

Solution 1.3: 27 (or 3^n)

Exercise 1.4: Write a formula representing the truth function f such that f(x, y) = 1 iff x = y = 0.5, and f(x, y) = 0 otherwise.

How many mutually distinct binary functions are there in a three-valued logic?

Solution 1.4:

 $(p \Leftrightarrow \neg p) \land (q \Leftrightarrow \neg q)$ $V'(3^2, 3) = 3^9 = 19683$

2 Fuzzy logic

Exercise 2.1: Let us have the following truth valuation in fuzzy logic v(p) = 0.3, v(q) = 0.8.

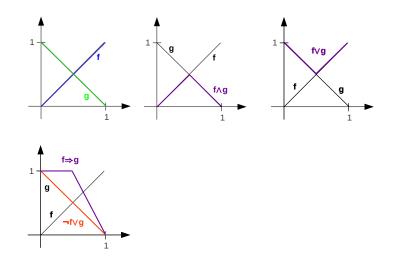
- a) For which valuation of r has the formula $(p \lor \neg q) \Rightarrow r$ the truth value 0.8?
- b) Write a formula F containing variables p, q such that v(F) = 0.5.
- c) For which valuation of r has the formula $r \Rightarrow (p \Rightarrow q)$ truth value less than 1?

Solution 2.1:

- a) v(r) = 0.1
- b) $p \Leftrightarrow q$ $q \Rightarrow p$
- c) not possible

Exercise 2.2: For the following pair of truth functions: v(p) = f(x) = x for $x \in \langle 0, 1 \rangle$ v(q) = g(x) = 1 - x for $x \in \langle 0, 1 \rangle$ draw the graphs for conjunction and disjunction. Then draw the

draw the graphs for conjunction and disjunction. Then draw the graph for implication $f \Rightarrow g$ and discuss its difference from the graph of $(\neg f \lor g)$.



Solution 2.2:

Exercise 2.3: For the following truth function v(p) = f(x) $f(x) = 0, x \in < 0, 0.2$ $f(x) = 5x - 1, x \in < 0.2, 0.4$ $f(x) = 1, x \in < 0.4, 1 >$ draw the graph and find an example of a phenomenon that can be represented by this function.