

1 Inductive inference in predicate logic

We still use Prolog notation for both the data and the learned hypotheses.

Exercise 1.1: Let us have the three-digit numbers categorization (the same as in the lecture):

example	139	319	854	468	349	561	756	789	987	256	189	354
classif.	+	-	I	+	+		I	+	-	+	+	

- a) specify the domain knowledge
- b) draw the relevant part of a specialization graph
- c) compare the learned hypothesis with the decision tree for the original task
- d) for the correct and complete solution: what (minimal) number of examples is needed for learning the decision tree? And how many for learning the Prolog hypothesis?

Exercise 1.2: Represent the following task using predicate logic (it has already been represented in propositional logic).

There are the following data with three attributes classified into two classes true/false:

Size \in {small, medium, large}, Color \in {red, blue, green}, Shape \in {square, circle, triangle}

small	red	triangle	true
small	green	triangle	true
large	red	triangle	false
small	blue	circle	false

Find one or more proper specializations and one or more proper generalizations of the following clauses. Do not specialize the variable Id.

- a) p(Id) :- size(Id, large), color(Id, red).
- b) p(Id) :- color(Id,red).
- c) p(Id) :- size(Id,large), color(Id,red), shape(Id,circle).
- d) p(Id).
- e) Find all specializations of the clause p(Id) :- color(Id,red). that cover the example <large,red,square>.

f) Find out whether (and how) the formulas from items a)–d) are in the generalization/specialization relation.

Exercise 1.3:

- a) Draw the specialization graph for the predicate member/2.
- b) Describe the changes in the graph for the predicate last/2.
- c) Write lists of training examples for these predicates.

Exercise 1.4: Describe the construction of a specialization graph for reverse/2. The domain knowledge consists of the predicate append/3.