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1 Inductive inference in predicate logic

We still use Prolog notation for both the data and the learned hypotheses.

Exercise 1.1: Let us have the three-digit numbers categorization (the same
as in the lecture):

example 139 319 854 468 349 561 756 789 987 256 189 354
classif. + − − + + − − + − + + −

a) specify the domain knowledge

b) draw the relevant part of a specialization graph

c) compare the learned hypothesis with the decision tree for the original task

d) for the correct and complete solution: what (minimal) number of examples
is needed for learning the decision tree? And how many for learning the
Prolog hypothesis?

Solution 1.1:

a) We know that the classification corresponds to the ordering of digits in
numbers, we assume that zero is not used (it is not present in the exam-
ples). We will represent the numbers as three separated digits.
It is possible to use the built-in operator </2 as a domain knowledge, how-
ever, we will define our own predicate lt instead. It is defined as follows:
lt(1,2). lt(2,3). ... lt(8,9).
lt(1,3). lt(2,4). ...
...

b) We will use four specialization operators. If we use them to specialize the
clause p(X,Y), we get the following results:

• unification of two variables
p(X,X).

• adding a subgoal from the domain knowledge (or the predicate cur-
rently being derived)
p(X,Y) :- p(U,V).
or
p(X,Y) :- r(Z). % domain knowledge: r/1

• consistent substitution of a variable by a constant
p(X,[]).
Usually when we know which variable is useful to substitute with
which constants (it can be observed in the learning data).

1



IA008 Computational logic Inductive inference: predicate logic

• consistent substitution of a variable by a most general term
p(X,[H|T]).
Conditions similar to the previous specialization operator apply.

The graph of specializations has a similar structure as in propositional
logic. However, it is typically much larger. We usually draw only its
relevant part: a subtree that shows the steps which lead to the final hy-
pothesis.

The graph is constructed according to the learning data. Only paths that
cover at least one positive example are taken into account. When a node
covers only positive examples, it is added into the hypothesis and it is
not further specialized. The process ends when the hypothesis covers all
positive examples. Algorithms use various optimisation techniques for
recognition of potentially promising paths.

p(X,Y,Z).

p(X,X,Z). p(X,Y,X). p(X,Y,Y). p(X,Y,Z):-lt(U,V). ...

... ...

p(X,Y,Z):-lt(X,V).

p(X,Y,Z):-lt(X,Y).

...

... ...

...

p(X,Y,Z):-lt(X,Y),lt(U,V).

...

p(X,Y,Z):-lt(X,Y),lt(Y,V).

...

p(X,Y,Z):-lt(X,Y),lt(Y,Z).

...

...
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c) Decision trees are also suitable for solving classification tasks. We try to
demonstrate that for this kind of tasks inductive inference in predicate
logic is much more effective.
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d) We need all the positive examples (each of them has an exclusive path in
the tree) for learning the decision tree. There are

(
9
3

)
= 84 of them.

Inductive inference needs one positive example, e.g.
p(1,2,3).
and negative examples that prevent searching in all improper paths, e.g.
p(1,1,1). p(1,3,2). p(2,1,3). p(2,3,1). p(3,2,1). p(3,1,2).

Exercise 1.2: Represent the following task using predicate logic (it has al-
ready been represented in propositional logic).
There are the following data with three attributes classified into two classes
true/false:

Size ∈ {small, medium, large},
Color ∈ {red, blue, green},
Shape ∈ {square, circle, triangle}

small red triangle true
small green triangle true
large red triangle false
small blue circle false

Find one or more proper specializations and one or more proper generalizatons
of the following clauses. Do not specialize the variable Id.

a) p(Id) :- size(Id,large), color(Id,red).

b) p(Id) :- color(Id,red).

3



IA008 Computational logic Inductive inference: predicate logic

c) p(Id) :- size(Id,large), color(Id,red), shape(Id,circle).

d) p(Id).

e) Find all specializations of the clause p(Id) :- color(Id,red). that
cover the example <large,red,square>.

f) Find out whether (and how) the formulas from items a)–d) are in the
generalization/specialization relation.

Solution 1.2: Domain knowledge: predicates size/2, color/2, shape/2.
Training data:
size(1,small). color(1,red). shape(1,triangle).
size(2,small). color(2,green). shape(2,triangle).
...
Positive examples: p(1). p(2).
Negative examples: p(3). p(4).

a) there are considerably more specializations than in propositional logic,
some of them (from one specialization path) follows:
p(Id) :- size(Id,large), color(Id,red), shape(X,Y).
p(Id) :- size(Id,large), color(Id,red), shape(Id,Y).
p(Id) :- size(Id,large), color(Id,red), shape(Id,circle).
...
p(Id) :- false.

b) e.g. p(Id) :- color(Id,red), size(Id,small).

c) e.g. p(Id) :- false.

d) e.g. p(Id) :- color(Id,green).

e) e.g.
p(Id) :- color(Id,red), size(Id,large).
p(Id) :- color(Id,red), shape(Id,square).
p(Id) :- color(Id,red), size(Id,large), shape(Id,square).

f) No pair is in the minimal generalization or minimal specialization relation.
There are many other generalization/specialization relations, e.g. d) is a
generalization of all other clauses.

Exercise 1.3:

a) Draw the specialization graph for the predicate member/2.

b) Describe the changes in the graph for the predicate last/2.

c) Write lists of training examples for these predicates.
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Solution 1.3:

member(X,[X|_]).
member(X,[_|T]):- member(X,T).

last(X,[X]).
last(X,[_|T]):- last(X,T).

The final theory for member is marked blue. The changes and the final theory
for last are marked green.
Positive examples for member: p(a,[a]). p(a,[b,a]). p(a,[a,b]).
Negative examples for member: p(a,[]). p(a,[b,c]).
Training examples for last are the same, only p(a,[a,b]). moves from positive
examples to negative ones.

p(X,Y).

p(X,[]). p(X,[H|T]). p(X,Y):-p(U,V).

p(X,[H|T]):-p(U,V).

...

...

p(X,[X|T]).

...
...

p(X,[X]).

p(X,[H|T]):-p(X,V).

p(X,[H|T]):-p(X,T).

Exercise 1.4: Describe the construction of a specialization graph for reverse/2.
The domain knowledge consists of the predicate append/3.

Solution 1.4:

append([],L,L).
append([H|T],L,[H|T2]):-append(T,L,T2).

reverse([],[]).
reverse([H|T],R):-reverse(T,Y),append(Y,[H],R).

The construction of the graph is similar to the previous task.
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