

INVESTMENTS IN EDUCATION DEVELOPMENT

1 Description logic

Exercise 1.1: In description logics \mathcal{AL} and \mathcal{ALCN} with concepts Male, Female and a role hasChild define the following concepts

- a) Person
- b) Mother, Father
- c) Parent
- d) Childless
- $\mathbf{e})$ Grandmother, Grandfather
- f) ParentOfSons (a parent with at least one son)
- g) ParentOfOnlySons
- h) MotherWithManyChildren (a mother with more then three children)
- i) GrandmotherOfOnlyGrandsons

Solution 1.1:

- b) Mother \equiv Female $\sqcap \exists hasChild.Person$ Father $\equiv Male \sqcap \exists hasChild.Person$ $\mathcal{AL}: Mother \equiv Female \sqcap \exists hasChild.\top, Father \equiv Male \sqcap \exists hasChild.\top$
- c) Parent \equiv Person $\sqcap \exists$ hasChild.Person or (because we suppose that there are only people in Person) Parent $\equiv \exists$ hasChild.Person \mathcal{AL} : Parent $\equiv \exists$ hasChild. \top
- d) Childless \equiv Person $\sqcap \neg(\exists$ hasChild.Person) \mathcal{AL} : Childless \equiv Person $\sqcap \forall$ hasChild. \bot
- e) Grandmother \equiv Mother $\sqcap \exists$ hasChild.Parent Grandfather \equiv Father $\sqcap \exists$ hasChild.Parent \mathcal{AL} : it is not possible
- f) $ParentOfSons \equiv Parent \sqcap \exists hasChild.Male$

- g) $ParentOfOnlySons \equiv Parent \sqcap \forall hasChild.Male$
- h) MotherWithManyChildren \equiv Mother $\sqcap \geq 4$ hasChild
- i) GrandmotherOfOnlyGrandsons \equiv Grandmother $\sqcap \forall$ hasChild.(ParentOfOnlySons \sqcup Childless)

Exercise 1.2: In description logic ALC with concepts Male, Doctor, Rich, Famous and roles hasChild, hasFriend define a popular textbook's concept HappyFather: "a father whose all children are doctors and all of the children have rich or famous friends".

Solution 1.2: HappyFather \equiv Male \sqcap (\exists hasChild.(\urcorner) \sqcap \forall hasChild.(Doctor \sqcap \exists hasFriend.(Rich \sqcup Famous))

Exercise 1.3: Prove or reject the following statements using tableaux in \mathcal{ALC} description logic.

- a) $(Person \sqcap (\forall hasChild.Male)) \sqsubseteq (Person \sqcap (\exists hasChild.Male))$
- b) $(Male \sqcap (\exists hasChild.Male) \sqcap (\forall hasChild.Male)) \sqsubseteq ((Male \sqcup Female) \sqcap (\exists hasChild.(Male \sqcup Female)))$

Solution 1.3: Statements of the form $C \sqsubseteq D$ are proved using equivalent unsatisfiability of $C \sqcap \neg D$. We suppose that $C \sqcap \neg D$ is satisfiable, so it contains at least one element. The root of the constructed tableau is then $(C \sqcap \neg D)(a)$ transformed into the negation normal form. To prove the original statement we have to create a finished contradictory tableau. Ordinary tableaux are used, not signed ones (every node is supposed to be true).

The first statement should be rejected, the second one should be proved.