
IA008 Computational logic Definite Clause Grammars

1 Definite Clause Grammars (DCG)

Exercise 1.1: We need a grammar which recognizes/generates the language
a2n for n > 0. Analyse the behaviour of the following grammars.

1.

s --> s, [a,a].

s --> [].

2.

s --> [a,a].

s --> s, [a,a].

3.

s --> [a,a].

s --> [a,a], s.

What is the native Prolog representation of the correct grammar?

Solution 1.1:

Grammar no. 1 always loops (for both recognition and generation).
Grammar no. 2 can generate the language and accepts correctly the words
which belong to the language. However, it loops for words that do not belong
to the language.
Grammar no. 3 is correct for both recognition and generation.
Native representation of the correct version:

s([a, a|A], A).

s([a, a|A], B) :- s(A, B).

Exercise 1.2: Write a DC grammar for recognition/generation of the (context-
sensitive) language anbncn for n ≥ 0. The grammar should return as its argu-
ment an appropriate n for every word generated/recognized.

Solution 1.2:

abc(N) --> a(0,N), b(N), c(N).

a(N,N) --> [].

a(N,V) --> [a], {N1 is N + 1}, a(N1,V).

b(0) --> [].

b(N) --> [b], {N > 0, N1 is N - 1}, b(N1).

c(0) --> [].

c(N) --> [c], {N > 0, N1 is N - 1}, c(N1).

1



IA008 Computational logic Definite Clause Grammars

Exercise 1.3: Write a DC grammar for the recognition of correct arithmetic
expressions in the postfix notation containing operators +,− and nonnegative
integers. (To be more simple, the grammar can also accept isolated nonnegative
integers.)

For example, the grammar should recognize the expression 5 2 − 4 3 2 − + +.
Suppose that the expression is already represented as the appropriate list of
terminals: [5,2,’-’,4,3,2,’-’,’+’,’+’].

Extend the grammar so that it evaluates the recognised expression. Extend
it further to return the parse tree as one of its arguments.

Solution 1.3: We can easily write a left-recursive grammar (that would not
work in Prolog!):

e --> f.

e --> e, e, [’+’].

e --> e, e, [’-’].

f --> [X], {integer(X), X>=0}.

After elimination of left recursion we get the correct Prolog grammar:

e --> f, e1.

e1 --> [].

e1 --> e, [’+’], e1.

e1 --> e, [’-’], e1.

f --> [X], {integer(X), X>=0}.

Expression-evaluating extension of the grammar:

e(Y) --> f(X), e1(X,Y).

e1(X,Y) --> [], {X=Y}.

e1(X,Y) --> e(V), [’+’], {W is X+V}, e1(W,Y).

e1(X,Y) --> e(V), [’-’], {W is X-V}, e1(W,Y).

f(X) --> [X], {integer(X), X>=0}.

Further extension of the grammar (returns a parse tree):

e(T,Y) --> f(Z,X), e1(Z,T,X,Y).

e1(Z,T,X,Y) --> [], {Z=T,X=Y}.

e1(Z,T,X,Y) --> e(T1,V), [’+’], {W is X+V, T2=plus(Z,T1)}, e1(T2,T,W,Y).

e1(Z,T,X,Y) --> e(T1,V), [’-’], {W is X-V, T2=minus(Z,T1)}, e1(T2,T,W,Y).

f(Z,X) --> [X], {integer(X),X>=0,Z=leaf(X)}.

2


