
Author: Karel Vaculík

Thesis supervisor: doc. RNDr. Lubomír Popelínský, Ph.D.

 Constructive tasks (resolution proofs in logic,

tableau proofs, ...)

 Large amount of tasks solved by students (automated

processing is an advantage)

 Task solutions can be represented as graphs, some

solutions (e.g. resolution proofs) even as trees.

⇒ Usage of graph mining methods

 Overview of graph mining methods with focus

on trees

 Design and implementation of a tree mining

system for classification of solved tasks in logic,

specifically resolution proofs in propositional

calculus

 System verification on data set from logic

courses at FI MU

 Discussion and further improvements

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 support = 0.25

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 support = 1.00

 Main focus on frequent tree mining

 Trees: free, rooted (ordered, unordered);

 Subtrees (rooted trees): induced, embedded

 Task: find all frequent subtrees satisfying

specified minimum support

 FreeTreeMiner

 TreeMiner

 Freqt

 uFreqt

 Unot

 PathJoin

 HybridTreeMiner

 Sleuth

 FreeTreeMiner

 TreeMiner

 Freqt

 uFreqt

 Unot

 PathJoin

 HybridTreeMiner

 Sleuth

Only for free trees

Only for ordered trees

Implementation not

available

Unsuitable output

 393 solved resolution proofs; in GraphML format

 Source: tests from course IB101 – Introduction

to Logic

 2 assignments (183 + 210 trees)

 Trees (proofs) classified as:

 Positive – correct solution (322 instances)

 Negative – incorrect solution (71 instances)

 Other attributes: number of obtained points, type

of resolution, numbers of occurences for

particular types of error, ...

New system which consists of modules for:

 Data preprocessing (from general graphs in

GraphML to trees in convenient format)

 Frequent subtree mining (using SLEUTH)

 Visualization of trees with subtres and decision

trees

 Classification of resolution proofs

 Classes: correct or incorrect proof (values

positive and negative)

 Every tree (proof) is represented by a set of its

frequent subtrees according to a given minimum

support value:

pattern1 pattern2 ... patternm class

true false ... false negative

...

false true ... true positive

 Evaluation method:

 Using test set

 Cross validation

 Subtrees by SLEUTH

 Classifiers from

 Weka

 Emerging pattern: A pattern with a substantial

support in data that belongs to one particular

class (GrowthRate metrics)

 For each class: create a lexicographical

ordering among all patterns on

GrowthRate × Support × PatternSize

 Take patterns from beginning of those orderings

to get N desired features for classification

 More patterns can be taken from ordering for a

particular class

 Examples of most significant emerging patterns

for classes (visualized by the system):

 a) positive b) negative

 Goal: perform generalization on the set of

patterns

 Only for the 3-node patterns (application of the

resolution rule)

 Lexicographical ordering on list of literals based

on number of negative and positive literals:

NegLiteral × PosLiteral

 E.g. ¬𝐶, ¬𝐵, 𝐴, 𝐶 ⇒ A ≤ B ≤ 𝐶 ((0,1) ≤ (1,0) ≤ (1,1));
 𝐵, 𝐴, ¬𝐴, 𝐶 ⇒ 𝐵 ≤ C ≤ A ((0,1) ≤ (0,1) ≤ (1,1))

 Lexicographical ordering on the previous

ordering – for node (clause) comparison:

 ((0,1), (1,0), 1,1) ≤ ((0,1),(0,1), (1,1))

 Procedure:

1. Compare parent nodes, smaller node will be first.

 E.g.:

 Procedure:

1. Compare parent nodes, smaller node will be first.

2. Merge literals from all nodes and create ordering

among them (in case of a tie check ordering on

nodes). Then assing variables to literal letters

according to ordering. E.g.:

 Procedure:

1. Compare parent nodes, smaller node will be first.

2. Merge literals from all nodes and create ordering

among them (in case of a tie check ordering on

nodes). Then assing variables to literal letters

according to ordering.

3. Lexicographically reorder literals in each node (as

we want: 𝑍, ¬𝑌 ~ ¬𝑌, 𝑍).

 To increase reliability of a classifier, it is used a

third class UNKNOWN for cases in which the

classifier is not very confident

 J48, NaiveBayes and IBk can output probability

of classifying an example ⇒ when probability is

lower than a given threshold, use UNKNOWN

 Classification on generalized frequent patterns
and emerging generalized patterns; used cross-
validation

 Generalized frequent patterns:
 Min. support (%): 0, 1, 2, 5, 10, 15, 20

 Emerging generalized patterns:
 Min. support (%): 1

 Number of used emerging patterns: 10, 50, 100, 200,
500

 Proportion of patterns for classes negative / positive:
50:50, 65:35, 80:20

 Generalized frequent patterns:

 Emerging generalized patters, best result:
J48, 100 patterns (proportion 65:35), accuracy 97.5%

Algorithm Min.

support (%)

Accuracy

(%)

Precision

(positive)

Recall

(positive)

Precision

(negative)

Recall

(negative)

J48 0 97.2 0.970 0.997 0.986 0.862

Naive

Bayes

1 96.7 0.965 0.997 0.986 0.832

SMO 0 97.5 0.973 0.997 0.988 0.873

IBk 5 96.7 0.970 0.991 0.955 0.862

 Classification into 3 classes:

 Same values for parameters + threshold 0.5–0.9

 Best result: IBk on generalized frequent patterns (min.

support 5%), threshold 0.8, accuracy 97.97% (but

negative recall only 0.816)

 Created new system for tree mining

 Main part of the system is module for

classification which uses several techniques; on

real data set from logic course reached

accuracy 97%

 System is going to be extended for new kinds of

constructive tasks (such as tableau proofs)

Thank you

