Graph mining for technologyenhanced learning

Master's Thesis FI MU Brno 2013

Author: Karel Vaculík Thesis supervisor: doc. RNDr. Lubomír Popelínský, Ph.D.

Motivation

- Constructive tasks (resolution proofs in logic, tableau proofs, ...)
 - Large amount of tasks solved by students (automated processing is an advantage)
 - Task solutions can be represented as graphs, some solutions (e.g. resolution proofs) even as trees.
 - \Rightarrow Usage of graph mining methods

Thesis goals

- Overview of graph mining methods with focus on trees
- Design and implementation of a tree mining system for classification of solved tasks in logic, specifically resolution proofs in propositional calculus
- System verification on data set from logic courses at FI MU
- Discussion and further improvements

- Main focus on frequent tree mining
- Trees: free, rooted (ordered, unordered);
- Subtrees (rooted trees): induced, embedded

- Main focus on frequent tree mining
- Trees: free, rooted (ordered, unordered);
- Subtrees (rooted trees): induced, embedded

- Main focus on frequent tree mining
- Trees: free, rooted (ordered, unordered);
- Subtrees (rooted trees): induced, embedded

- Main focus on frequent tree mining
- Trees: free, rooted (ordered, unordered);
- Subtrees (rooted trees): induced, embedded

 Task: find all frequent subtrees satisfying specified minimum support

Tree mining algorithms

- FreeTreeMiner
- TreeMiner
- Freqt
- uFreqt
- Unot
- PathJoin
- HybridTreeMiner
- Sleuth

Tree mining algorithms

- FreeTreeMiner
- TreeMiner
- Freqt
- uFreqt
- Unot
- PathJoin
- HybridTreeMiner
- Sleuth

Only for free trees

Only for ordered trees

Implementation not available

Unsuitable output

Data

- 393 solved resolution proofs; in GraphML format
- Source: tests from course IB101 Introduction to Logic
- 2 assignments (183 + 210 trees)
- Trees (proofs) classified as:
 - Positive correct solution (322 instances)
 - Negative incorrect solution (71 instances)
- Other attributes: number of obtained points, type of resolution, numbers of occurences for particular types of error, ...

Created system

New system which consists of modules for:

- Data preprocessing (from general graphs in GraphML to trees in convenient format)
- Frequent subtree mining (using SLEUTH)
- Visualization of trees with subtres and decision trees
- Classification of resolution proofs

Classification

- Classes: correct or incorrect proof (values positive and negative)
- Every tree (proof) is represented by a set of its frequent subtrees according to a given minimum support value:

pattern ₁	pattern ₂	 pattern _m	class
true	false	 false	negative
false	true	 true	positive

Classification – basic scheme

- Evaluation method:
 Using test set
 Cross validation
- Subtrees by SLEUTH
- Classifiers from Weka

Classification – emerging patterns

- Emerging pattern: A pattern with a substantial support in data that belongs to one particular class (GrowthRate metrics)
- For each class: create a lexicographical ordering among *all* patterns on *GrowthRate* × *Support* × *PatternSize*
- Take patterns from beginning of those orderings to get N desired features for classification
 - More patterns can be taken from ordering for a particular class

Classification – emerging patterns

 Examples of most significant emerging patterns for classes (visualized by the system):

 a) positive
 b) negative

 Goal: perform generalization on the set of patterns

- Only for the 3-node patterns (application of the resolution rule)
- Lexicographical ordering on list of literals based on number of negative and positive literals: NegLiteral × PosLiteral
 - E.g. $\neg C$, $\neg B$, A, $C \Rightarrow A \le B \le C$ ((0,1) \le (1,0) \le (1,1)); B, A, $\neg A$, $C \Rightarrow B \le C \le A$ ((0,1) \le (0,1) \le (1,1))
- Lexicographical ordering on the previous ordering – for node (clause) comparison:
 - $((0,1), (1,0), (1,1)) \le ((0,1), (0,1), (1,1))$

- Procedure:
 - Compare parent nodes, smaller node will be first.
 E.g.:

Procedure:

- 1. Compare parent nodes, smaller node will be first.
- 2. Merge literals from all nodes and create ordering among them (in case of a tie check ordering on nodes). Then assing variables to literal letters according to ordering. E.g.:

Procedure:

- 1. Compare parent nodes, smaller node will be first.
- 2. Merge literals from all nodes and create ordering among them (in case of a tie check ordering on nodes). Then assing variables to literal letters according to ordering.
- 3. Lexicographically reorder literals in each node (as we want: $Z, \neg Y \sim \neg Y, Z$).

Classification – three classes

- To increase reliability of a classifier, it is used a third class UNKNOWN for cases in which the classifier is not very confident
- J48, NaiveBayes and IBk can output probability of classifying an example ⇒ when probability is lower than a given *threshold*, use UNKNOWN

Experiments

- Classification on generalized frequent patterns and emerging generalized patterns; used crossvalidation
- Generalized frequent patterns:
 - Min. support (%): 0, 1, 2, 5, 10, 15, 20
- Emerging generalized patterns:
 - Min. support (%): 1
 - Number of used emerging patterns: 10, 50, 100, 200, 500
 - Proportion of patterns for classes negative / positive: 50:50, 65:35, 80:20

Experiments

Generalized frequent patterns:

Algorithm	Min. support (%)	Accuracy (%)	Precision (positive)	Recall (positive)	Precision (negative)	Recall (negative)
J48	0	97.2	0.970	0.997	0.986	0.862
Naive Bayes	1	96.7	0.965	0.997	0.986	0.832
SMO	0	97.5	0.973	0.997	0.988	0.873
IBk	5	96.7	0.970	0.991	0.955	0.862

 Emerging generalized patters, best result: J48, 100 patterns (proportion 65:35), accuracy 97.5%

Experiments

- Classification into 3 classes:
 - Same values for parameters + threshold 0.5–0.9
 - Best result: IBk on generalized frequent patterns (min. support 5%), threshold 0.8, accuracy 97.97% (but negative recall only 0.816)

Experiments – decision tree example

Conclusion and future work

- Created new system for tree mining
- Main part of the system is module for classification which uses several techniques; on real data set from logic course reached accuracy 97%
- System is going to be extended for new kinds of constructive tasks (such as tableau proofs)

Thank you